Modular represenfations of degree $\leq 27$ of finite quasisimple groups of alternating and sporadic types
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 20-49
Voir la notice du chapitre de livre
The absolutely irreducible modular representations of degree $\leq 27$ of the finite quasisimple groups of alternating and sporadic types are described. This completes the description of the absolutely irreducible modular representations of degree $\leq 27$ of all finite quasisimple groups. The obtained results may be used for the classification of the maximal subgroups in finite classical groups of the dimension $\leq 27$ and in exceptional groups $F_4(q)$, $^2E_6(q)$, $E_6(q)$.
@article{TIMM_1992_1_a2,
author = {A. S. Kondrat'ev},
title = {Modular represenfations of degree $\leq 27$ of finite quasisimple groups of alternating and sporadic types},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {20--49},
year = {1992},
volume = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_1992_1_a2/}
}
TY - JOUR AU - A. S. Kondrat'ev TI - Modular represenfations of degree $\leq 27$ of finite quasisimple groups of alternating and sporadic types JO - Trudy Instituta matematiki i mehaniki PY - 1992 SP - 20 EP - 49 VL - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_1992_1_a2/ LA - ru ID - TIMM_1992_1_a2 ER -
A. S. Kondrat'ev. Modular represenfations of degree $\leq 27$ of finite quasisimple groups of alternating and sporadic types. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 20-49. http://geodesic.mathdoc.fr/item/TIMM_1992_1_a2/