Modular represenfations of degree $\leq 27$ of finite quasisimple groups of alternating and sporadic types
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 20-49

Voir la notice de l'article provenant de la source Math-Net.Ru

The absolutely irreducible modular representations of degree $\leq 27$ of the finite quasisimple groups of alternating and sporadic types are described. This completes the description of the absolutely irreducible modular representations of degree $\leq 27$ of all finite quasisimple groups. The obtained results may be used for the classification of the maximal subgroups in finite classical groups of the dimension $\leq 27$ and in exceptional groups $F_4(q)$, $^2E_6(q)$, $E_6(q)$.
@article{TIMM_1992_1_a2,
     author = {A. S. Kondrat'ev},
     title = {Modular represenfations of degree $\leq 27$ of finite quasisimple groups of alternating and sporadic types},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {20--49},
     publisher = {mathdoc},
     volume = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_1992_1_a2/}
}
TY  - JOUR
AU  - A. S. Kondrat'ev
TI  - Modular represenfations of degree $\leq 27$ of finite quasisimple groups of alternating and sporadic types
JO  - Trudy Instituta matematiki i mehaniki
PY  - 1992
SP  - 20
EP  - 49
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_1992_1_a2/
LA  - ru
ID  - TIMM_1992_1_a2
ER  - 
%0 Journal Article
%A A. S. Kondrat'ev
%T Modular represenfations of degree $\leq 27$ of finite quasisimple groups of alternating and sporadic types
%J Trudy Instituta matematiki i mehaniki
%D 1992
%P 20-49
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_1992_1_a2/
%G ru
%F TIMM_1992_1_a2
A. S. Kondrat'ev. Modular represenfations of degree $\leq 27$ of finite quasisimple groups of alternating and sporadic types. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 20-49. http://geodesic.mathdoc.fr/item/TIMM_1992_1_a2/