Modular represenfations of degree $\leq 27$ of finite quasisimple groups of alternating and sporadic types
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 20-49
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The absolutely irreducible modular representations of degree $\leq 27$ of the finite quasisimple groups of alternating and sporadic types are described. This completes the description of the absolutely irreducible modular representations of degree $\leq 27$ of all finite quasisimple groups. The obtained results may be used for the classification of the maximal subgroups in finite classical groups of the dimension $\leq 27$ and in exceptional groups $F_4(q)$, $^2E_6(q)$, $E_6(q)$.
			
            
            
            
          
        
      @article{TIMM_1992_1_a2,
     author = {A. S. Kondrat'ev},
     title = {Modular represenfations of degree $\leq 27$ of finite quasisimple groups of alternating and sporadic types},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {20--49},
     publisher = {mathdoc},
     volume = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_1992_1_a2/}
}
                      
                      
                    TY - JOUR AU - A. S. Kondrat'ev TI - Modular represenfations of degree $\leq 27$ of finite quasisimple groups of alternating and sporadic types JO - Trudy Instituta matematiki i mehaniki PY - 1992 SP - 20 EP - 49 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_1992_1_a2/ LA - ru ID - TIMM_1992_1_a2 ER -
A. S. Kondrat'ev. Modular represenfations of degree $\leq 27$ of finite quasisimple groups of alternating and sporadic types. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 20-49. http://geodesic.mathdoc.fr/item/TIMM_1992_1_a2/