Linear recurrence equations in the space of convex polygons with non-intersecting solutions
Trudy Instituta matematiki, Tome 32 (2024) no. 2, pp. 69-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

A necessary and sufficient condition is obtained for the coefficient matrix of a linear recurrence equation in the space of convex polygons, any two different solutions of which do not intersect, i. e. the values of the solutions for each argument are different.
Keywords: linear recurrence equations
Mots-clés : convex polygons.
@article{TIMB_2024_32_2_a5,
     author = {A. S. Vaidzelevich},
     title = {Linear recurrence equations in the space of convex polygons with non-intersecting solutions},
     journal = {Trudy Instituta matematiki},
     pages = {69--72},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a5/}
}
TY  - JOUR
AU  - A. S. Vaidzelevich
TI  - Linear recurrence equations in the space of convex polygons with non-intersecting solutions
JO  - Trudy Instituta matematiki
PY  - 2024
SP  - 69
EP  - 72
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a5/
LA  - ru
ID  - TIMB_2024_32_2_a5
ER  - 
%0 Journal Article
%A A. S. Vaidzelevich
%T Linear recurrence equations in the space of convex polygons with non-intersecting solutions
%J Trudy Instituta matematiki
%D 2024
%P 69-72
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a5/
%G ru
%F TIMB_2024_32_2_a5
A. S. Vaidzelevich. Linear recurrence equations in the space of convex polygons with non-intersecting solutions. Trudy Instituta matematiki, Tome 32 (2024) no. 2, pp. 69-72. http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a5/

[1] Voidelevich A. S., “Linear Recurrent Equations in the Space of Convex Compact Sets and the Diameters of Their Solutions”, Differential Equations, 59 (2023), 1090–1094 | DOI | DOI | MR