Linear recurrence equations in the space of convex polygons with non-intersecting solutions
Trudy Instituta matematiki, Tome 32 (2024) no. 2, pp. 69-72
Voir la notice de l'article provenant de la source Math-Net.Ru
A necessary and sufficient condition is obtained for the coefficient matrix of a linear recurrence equation in the space of convex polygons, any two different solutions of which do not intersect, i. e. the values of the solutions for each argument are different.
Keywords:
linear recurrence equations
Mots-clés : convex polygons.
Mots-clés : convex polygons.
@article{TIMB_2024_32_2_a5,
author = {A. S. Vaidzelevich},
title = {Linear recurrence equations in the space of convex polygons with non-intersecting solutions},
journal = {Trudy Instituta matematiki},
pages = {69--72},
publisher = {mathdoc},
volume = {32},
number = {2},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a5/}
}
TY - JOUR AU - A. S. Vaidzelevich TI - Linear recurrence equations in the space of convex polygons with non-intersecting solutions JO - Trudy Instituta matematiki PY - 2024 SP - 69 EP - 72 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a5/ LA - ru ID - TIMB_2024_32_2_a5 ER -
A. S. Vaidzelevich. Linear recurrence equations in the space of convex polygons with non-intersecting solutions. Trudy Instituta matematiki, Tome 32 (2024) no. 2, pp. 69-72. http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a5/