Non-exposed faces of the cone of completely positive matrices
Trudy Instituta matematiki, Tome 32 (2024) no. 2, pp. 56-68

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the cone of completely positive matrices. Currently, some families of non-exposed polyhedral faces of this cone were constructed. Inspired by these results, in this paper, we continue the study of the existence and properties of non-exposed faces of the cone of completely positive matrices. We prove a criterion for a face of this cone to be non-exposed. We also provide sufficient conditions that can be easily checked numerically. We show that for any $p\geqslant 6$, there exist non-exposed non-polyhedral faces of the cone of $p\times p$ completely positive matrices. Illustrative examples are given.
Keywords: conic optimization, completely positive matrices, $K$-semidefinite matrices, a face of a cone, exposed and non-exposed faces of a cone.
@article{TIMB_2024_32_2_a4,
     author = {O. I. Kostyukova},
     title = {Non-exposed faces of the cone of completely positive matrices},
     journal = {Trudy Instituta matematiki},
     pages = {56--68},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a4/}
}
TY  - JOUR
AU  - O. I. Kostyukova
TI  - Non-exposed faces of the cone of completely positive matrices
JO  - Trudy Instituta matematiki
PY  - 2024
SP  - 56
EP  - 68
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a4/
LA  - en
ID  - TIMB_2024_32_2_a4
ER  - 
%0 Journal Article
%A O. I. Kostyukova
%T Non-exposed faces of the cone of completely positive matrices
%J Trudy Instituta matematiki
%D 2024
%P 56-68
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a4/
%G en
%F TIMB_2024_32_2_a4
O. I. Kostyukova. Non-exposed faces of the cone of completely positive matrices. Trudy Instituta matematiki, Tome 32 (2024) no. 2, pp. 56-68. http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a4/