Non-exposed faces of the cone of completely positive matrices
Trudy Instituta matematiki, Tome 32 (2024) no. 2, pp. 56-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the cone of completely positive matrices. Currently, some families of non-exposed polyhedral faces of this cone were constructed. Inspired by these results, in this paper, we continue the study of the existence and properties of non-exposed faces of the cone of completely positive matrices. We prove a criterion for a face of this cone to be non-exposed. We also provide sufficient conditions that can be easily checked numerically. We show that for any $p\geqslant 6$, there exist non-exposed non-polyhedral faces of the cone of $p\times p$ completely positive matrices. Illustrative examples are given.
Keywords: conic optimization, completely positive matrices, $K$-semidefinite matrices, a face of a cone, exposed and non-exposed faces of a cone.
@article{TIMB_2024_32_2_a4,
     author = {O. I. Kostyukova},
     title = {Non-exposed faces of the cone of completely positive matrices},
     journal = {Trudy Instituta matematiki},
     pages = {56--68},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a4/}
}
TY  - JOUR
AU  - O. I. Kostyukova
TI  - Non-exposed faces of the cone of completely positive matrices
JO  - Trudy Instituta matematiki
PY  - 2024
SP  - 56
EP  - 68
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a4/
LA  - en
ID  - TIMB_2024_32_2_a4
ER  - 
%0 Journal Article
%A O. I. Kostyukova
%T Non-exposed faces of the cone of completely positive matrices
%J Trudy Instituta matematiki
%D 2024
%P 56-68
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a4/
%G en
%F TIMB_2024_32_2_a4
O. I. Kostyukova. Non-exposed faces of the cone of completely positive matrices. Trudy Instituta matematiki, Tome 32 (2024) no. 2, pp. 56-68. http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a4/

[1] Anjos M. F., Lasserre J. B. (eds)., Handbook on Semi-definite, Conic and Polynomial Optimization, International Series in OR/MS, 166, Springer, New York, 2012 | DOI | MR

[2] Letchford A. N., Parkes A. J., “A guide to conic optimisation and its applications”, RAIRO – Oper. Res., 52:4–5 (2018), 1087–1106 | DOI | MR

[3] Bomze I. M., Schachinger W., Uchida G., “Think co(mpletely)positive! Matrix properties, examples and a clustered bibliography on copositive optimization”, Journal of Global Optimization, 52:3 (2012), 423–445 | DOI | MR

[4] Dickinson P. J., “Geometry of the copositive and completely positive cones”, Journal of Mathematical Analysis and Applications, 380:1 (2011), 377–395 | DOI | MR

[5] Kostyukova O. I., Tchemisova T. V., “On equivalent representations and properties of faces of the cone of copositive matrices”, Optimization, 71:11 (2022), 3211–3239 | DOI | MR

[6] Hoffman A. J., Pereira F., “On copositive matrices with -1, 0, 1 entries”, Journal of Combinatorial Theory, Series A, 14:3 (1973), 302–309 | DOI | MR

[7] Berman A., Dür M., Shaked-Monderer N., “Open problems in the theory of completely positive and copositive matrices”, The Electronic Journal of Linear Algebra, 29 (2015), 46–58 | DOI | MR

[8] Zhang Q., Completely positive cones: are they facially exposed?, Linear Algebra and its Applications, 558 (2018), 195–204 | DOI | MR

[9] Zhang Q., “Faces of the $5\times 5$ completely positive cone”, Linear and Multilinear Algebra, 68:12 (2020), 2523–2540 | DOI | MR

[10] Kostyukova O. I., “Non-exposed polyhedral faces of the completely positive cone”, Linear and Multilinear Algebra, 2024, 1–28 | DOI | MR

[11] Eichfelder G., Jahn J., “Set-Semidefinite Optimization”, Journal of Convex Analysis, 15:4 (2008), 767–801 | MR

[12] Kostyukova O. I., Tchemisova T. V., Dudina O. S., “On the Uniform Duality in Copositive Optimization”, Journal of Optimization Theory and Applications, 2024 | DOI | MR

[13] Wang F., Wolkowicz H., Singularity degree of non-facially exposed faces, 2022, arXiv: 2211.00834

[14] Kostyukova O. I., Tchemisova T. V., Representation of Zeros of a Copositive Matrix via Maximal Cliques of a Graph, 2024, arXiv: 2410.08066 | MR

[15] Alizadeh F., Schmieta S. H., Optimization with Semi-definite, Quadratic and Linear Constraints, Report No 23–97, Rutgers Center for Operations Research, Rutgers University, 1997