On distance regular graphs with diameter $3$ and degree $44$
Trudy Instituta matematiki, Tome 32 (2024) no. 1, pp. 57-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

Distance-regular graph $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$ has intersection array $\{r(c_2+1)+a_3$, $rc_2$, $a_3+1$; 1, $c_2$, $r(c_2+1)\}$ (M. S. Nirova). For distance-regular graph with diameter 3 and degree 44 there are 7 fisiable intersection arrays. For each of them the graph $\Gamma_3$ is strongly regular. For intersection array $\{44, 30, 5; 1, 3, 40\}$ we have $a_3=4$, $c_2=3$ and $r = 10$, $\Gamma_2$ has parameters $(540, 440, 358, 360)$ and $\Gamma_3$ has parameters $(540, 55, 10, 5)$. This graph does not exist (Koolen-Park). For intersection array $\{44, 35, 3; 1, 5, 42\}$ the graph $\Gamma_3$ has parameters $(375, 22, 5, 1)$. Graph $\Gamma_3$ does nor exist (local subgraph is the union of isolated $6$-cliques). In this paper it is proved that distance-regular graphs with intersection arrays $\{44, 36, 5; 1, 9, 40\}$, $\{44, 36, 12; 1, 3, 33\}$ and $\{44, 42, 5; 1, 7, 40\}$ do not exist.
Keywords: distance-regular graph, strongly regular graph, triple intersection numbers.
@article{TIMB_2024_32_1_a6,
     author = {M. Chen and A. A. Makhnev and V. S. Klimin},
     title = {On distance regular graphs with diameter $3$ and degree $44$},
     journal = {Trudy Instituta matematiki},
     pages = {57--63},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a6/}
}
TY  - JOUR
AU  - M. Chen
AU  - A. A. Makhnev
AU  - V. S. Klimin
TI  - On distance regular graphs with diameter $3$ and degree $44$
JO  - Trudy Instituta matematiki
PY  - 2024
SP  - 57
EP  - 63
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a6/
LA  - ru
ID  - TIMB_2024_32_1_a6
ER  - 
%0 Journal Article
%A M. Chen
%A A. A. Makhnev
%A V. S. Klimin
%T On distance regular graphs with diameter $3$ and degree $44$
%J Trudy Instituta matematiki
%D 2024
%P 57-63
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a6/
%G ru
%F TIMB_2024_32_1_a6
M. Chen; A. A. Makhnev; V. S. Klimin. On distance regular graphs with diameter $3$ and degree $44$. Trudy Instituta matematiki, Tome 32 (2024) no. 1, pp. 57-63. http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a6/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl

[2] Koolen J. H., Park J., “Shilla distance-regular graphs”, Europ. J. Comb., 31:8 (2010), 2064–2073 | DOI | MR | Zbl

[3] Coolsaet K., Jurishich A., “Using equality in the Krein conditions to prove nonexistence of sertain distance-regular graphs”, J. Comb. Theory, Series A, 115 (2008), 1086–1095 | DOI | MR | Zbl

[4] Berlekamp E. R., van Lint J. H., Seidel J. J., “A strongly regular graph derived from the perfect ternary Golay code”, A survey of combinatorial theory, ed. Srivastava J. N., North-Holland Publishing Company, 1973, 25–30 | DOI | MR