On approximations of Riemann--Liouville integral on a segement by rational Fourier--Chebyshev integral operators
Trudy Instituta matematiki, Tome 32 (2024) no. 1, pp. 38-56

Voir la notice de l'article provenant de la source Math-Net.Ru

Approximations of Riemann–Liouville integral on a segment by rational integral operators Fourier–Chebyshev are investigated. An integral representation of the approximations is found. Rational approximations Riemann–Liouville integral with density $\varphi_\gamma(x) = (1-x)^\gamma,$ $\gamma \in (0,+\infty)\backslash\mathbb{N},$ are studied, estimates of pointwise and uniform approximations are established. In the case of one pole in an open complex plane, an asymptotic expression is obtained for the approximating function majorants of uniform approximations and the optimal value of the parameter at which the majorant has the asymptotically highest rate of decrease. As a consequence, estimates of approximations of Riemann–Liouville integral with density belonging to some classes of continuous functions on the segment by partial sums of the polynomial Fourier–Chebyshev series are obtained.
Keywords: Riemann–Liouville integral, rational Fourier–Chebyshev integral operator, functions with power singularity, uniform approximations, asymptotic estimates, Laplace method.
@article{TIMB_2024_32_1_a5,
     author = {P. G. Patseika and E. A. Rovba},
     title = {On approximations of {Riemann--Liouville} integral on a segement by rational {Fourier--Chebyshev} integral operators},
     journal = {Trudy Instituta matematiki},
     pages = {38--56},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a5/}
}
TY  - JOUR
AU  - P. G. Patseika
AU  - E. A. Rovba
TI  - On approximations of Riemann--Liouville integral on a segement by rational Fourier--Chebyshev integral operators
JO  - Trudy Instituta matematiki
PY  - 2024
SP  - 38
EP  - 56
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a5/
LA  - ru
ID  - TIMB_2024_32_1_a5
ER  - 
%0 Journal Article
%A P. G. Patseika
%A E. A. Rovba
%T On approximations of Riemann--Liouville integral on a segement by rational Fourier--Chebyshev integral operators
%J Trudy Instituta matematiki
%D 2024
%P 38-56
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a5/
%G ru
%F TIMB_2024_32_1_a5
P. G. Patseika; E. A. Rovba. On approximations of Riemann--Liouville integral on a segement by rational Fourier--Chebyshev integral operators. Trudy Instituta matematiki, Tome 32 (2024) no. 1, pp. 38-56. http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a5/