Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2024_32_1_a5, author = {P. G. Patseika and E. A. Rovba}, title = {On approximations of {Riemann--Liouville} integral on a segement by rational {Fourier--Chebyshev} integral operators}, journal = {Trudy Instituta matematiki}, pages = {38--56}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a5/} }
TY - JOUR AU - P. G. Patseika AU - E. A. Rovba TI - On approximations of Riemann--Liouville integral on a segement by rational Fourier--Chebyshev integral operators JO - Trudy Instituta matematiki PY - 2024 SP - 38 EP - 56 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a5/ LA - ru ID - TIMB_2024_32_1_a5 ER -
%0 Journal Article %A P. G. Patseika %A E. A. Rovba %T On approximations of Riemann--Liouville integral on a segement by rational Fourier--Chebyshev integral operators %J Trudy Instituta matematiki %D 2024 %P 38-56 %V 32 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a5/ %G ru %F TIMB_2024_32_1_a5
P. G. Patseika; E. A. Rovba. On approximations of Riemann--Liouville integral on a segement by rational Fourier--Chebyshev integral operators. Trudy Instituta matematiki, Tome 32 (2024) no. 1, pp. 38-56. http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a5/
[1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integrals and derivatives of fractional order and some of their applications, Nauka i tekhnika Publ, Minsk, 1987 (in Russian)
[2] S. M. Nikol'skii, “On the best approximation of a function whose s-th derivative has discontinuities of the first kind”, Dokl. Academy of Sciences of the USSR, 55:2 (1947), 99–102 (in Russian) | Zbl
[3] A. A. Tyleneva, “Approximation of the Riemann-Liouville integrals by algebraic polynomials on the segment”, Izv. Saratov University. Ser. Math. Fur. Inform, 14:3 (2014), 305–311 (in Russian)
[4] I. M. Ganzburg, “On the approximation of functions with a given modulus of continuity by P. L. Chebyshev sums”, Dokl. Academy of Sciences of the USSR, 91:6 (1953), 1253–1256 (in Russian) | Zbl
[5] V. M. Badkov, “Approximation of functions in the uniform metric by Fourier sums over orthogonal polynomials”, Trudy MIAN, 145, 1980, 20–62 | Zbl
[6] S. G. Selivanova, “Asymptotic estimates for approximations of differentiable non-periodic functions by Chebyshev sums”, Dokl. Academy of Sciences of the USSR, 105:4 (1955), 648–651 (in Russian) | Zbl
[7] A. F. Timan, L. I. Tuchinskii, “Approximation of differentiable functions defined on a finite interval by algebraic polynomials”, Dokl. Academy of Sciences of the USSR, 111:4 (1956), 771–773 (in Russian)
[8] R. Raitsin, “A The best approximation of a certain class of differentiable functions by algebraic polynomials”, Soviet Math. (Iz. VUZ), 20:1 (1976), 54–62 | MR
[9] R. A. Raitsin, “Fourier-Chebyshev series of a class of functions”, Soviet Math. (Iz. VUZ), 32:10 (1988), 123–126 | MR
[10] E. A. Rovba, “Approximation of functions differentiable in the Riemann-Liouville sense by rational operators”, Doklady of the National Academy of Sciences of Belarus, 40:6 (1996), 18–22 (in Russian) | MR | Zbl
[11] K. A. Smotritskii, “Approximation by rational operators of Valle Poussin on a segment”, Trudy Instituta matematiki, 9 (2001), 110–114 (in Russian)
[12] K. A. Smotritskii, “On the approximation of functions differentiable in the sense of Riemann-Liouville”, Vestsi NAN Belarusi. Ser. fiz. mat. navuk, 2002, no. 4, 42–47 (in Russian) | MR | Zbl
[13] I. V. Rybachenko, “Rational interpolation of functions with the Riemann-Liouville derivative from $L_p$”, Vestnik BGU. Ser. 1, 2006, no. 2, 69–74 (in Russian) | MR | Zbl
[14] A. P. Starovoitov, “Comparison of the rates of rational and polynomial approximations of differentiable functions”, Math. Notes, 44:4 (1988), 770–774 | DOI | MR | Zbl
[15] A. P. Starovoitov, “Rational approximations of Riemann-Liouville and Weyl fractional integrals”, Math. Notes, 78:3 (2005), 391–402 | DOI | DOI | MR | Zbl
[16] S. Pashkovskii, Computational applications of polynomials and Chebyshev series, Nauka. Gl. red. fiz. mat. lit-ry, M., 1983 (in Russian)
[17] N. I. Vasiliev, Yu. A. Klokov, A. Ya. Shkerstena, Application of Chebyshev polynomials in numerical analysis, Zinatne Publ, Riga, 1984 (in Russian) | MR
[18] P. K. Suetin, Classical orthogonal polynomials, 3rd ed., revised. and additional, FIZMATLIT, M., 2005
[19] S. V. Marfitsyn, V. P. Marfitsyn, “The use of Chebyshev's polynomials of the first type for a description of the steady-state conditions of metal under constant and variable loading”, Vestnik Kurganskogo gosuniversiteta. Ser. tekhn. nauki, 2016, no. 1(3), 96–98 (in Russian)
[20] T. Miyakoda, “Direct discretization of the fractional-order differential by using Chebyshev series expansion”, PAMM Proc. Appl. Math. Mech., 7 (2007), 2020011–2020012 | DOI
[21] E. A. Rovba, “On one direct method in rational approximation”, Dokl. NAS BSSR, 23:11 (1979), 968–971 (in Russian) | MR | Zbl
[22] P. G. Patseika, Y. A. Rouba, K. A. Smatrytski, “On one rational integral operator of Fourier-Chebyshev type and approximation of Markov functions”, Journal of the Belarusian State University. Mathematics and Informatics, 2 (2020), 6–27 | DOI
[23] P. G. Potseiko, Y. A. Rovba, “Approximations on classes of Poisson integrals by Fourier-Chebyshev rational integral operators”, Siberian Math. J., 62:2 (2021), 292–312 | DOI | MR | Zbl
[24] V. N. Rusak, Rational functions as an apparatus of approximation, Belorusskii gosudarstvennyi universitet im. V. I. Lenina, Minsk, 1979, 179 pp. (in Russian)
[25] S. Nikolsky, “On the best approximation of functions satisfying Lipschitz's conditions by polynomials”, Izvestia Akad. Nauk SSSR, 10:4 (1946), 295–322 (in Russian) | Zbl
[26] M. A. Evgrafov, Asymptotic estimates and entire functions, Nauka, M., 1979, 320 pp. (in Russian) | MR
[27] Fedoryuk M. V., Asymptotics. Integrals and series, Nauka, M., 1987, 544 pp. (in Russian) | MR
[28] W. Pinkewitch, “Sur l'ordre du reste de la serie de Fourier des fonctions derivables au sens de Weyl”, Izvestia Akad. Nauk SSSR, 4:6 (1940), 521–528 (in Russian)