On the solvability and factorization of some $\pi$-solvable irreducible linear groups of primary degree. Part III
Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 91-102

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is the third one in a series of papers, where for a set $\pi$ consisting of odd primes, finite $\pi$-solvable irreducible complex linear groups of degree $2|H|+1$ are investigated, for which Hall $\pi$-subgroups are $TI$-subgroups and are not normal in groups. The purpose of the series is to prove solvability and to determine the conditions for factorization of such groups. The proof of the theorem is continued. Further properties of the minimal counterexample to the theorem are established.
@article{TIMB_2023_31_2_a9,
     author = {A. A. Yadchenko},
     title = {On the solvability and factorization of some $\pi$-solvable irreducible linear groups of primary degree. {Part} {III}},
     journal = {Trudy Instituta matematiki},
     pages = {91--102},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a9/}
}
TY  - JOUR
AU  - A. A. Yadchenko
TI  - On the solvability and factorization of some $\pi$-solvable irreducible linear groups of primary degree. Part III
JO  - Trudy Instituta matematiki
PY  - 2023
SP  - 91
EP  - 102
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a9/
LA  - ru
ID  - TIMB_2023_31_2_a9
ER  - 
%0 Journal Article
%A A. A. Yadchenko
%T On the solvability and factorization of some $\pi$-solvable irreducible linear groups of primary degree. Part III
%J Trudy Instituta matematiki
%D 2023
%P 91-102
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a9/
%G ru
%F TIMB_2023_31_2_a9
A. A. Yadchenko. On the solvability and factorization of some $\pi$-solvable irreducible linear groups of primary degree. Part III. Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 91-102. http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a9/