On the supersolubility of a group with given systems of conditionally seminormal subgroups
Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 81-90
Voir la notice de l'article provenant de la source Math-Net.Ru
The subgroups $A$ and $B$ are said to be $\mathrm{cc}$-permutable, if $A$ is permutable with $B^x$ for some ${x\in \langle A,B\rangle}$. A subgroup $A$ of a finite group $G$ is called conditionally seminormal subgroup in $G$, if there exists a subgroup $T$ of $G$ such that $G=AT$ and $A$ is $\mathrm{cc}$-permutable with all subgroups of $T$. In this paper, we proved the supersolubility of a group $G = AB$, where $A$ and $B$ are supersoluble conditionally seminormal subgroups in $G$, in the following cases: the derived subgroup $G^\prime$ is nilpotent; ${(|A|,|B|)=1}$; $G$ is metanilpotent and ${(|G:A|,|G:B|)=1}$; $G$ is metanilpotent and ${(|A/A^{\frak N}|,|B/B^{\frak N}|)=1}$. Besides, we obtained the supersolubility of a group in which maximal subgroups, Sylow subgroups, maximal subgroups of every Sylow subgroup, minimal subgroups, $2$-maximal subgroups are conditionally seminormal subgroups.
@article{TIMB_2023_31_2_a8,
author = {A. A. Trofimuk},
title = {On the supersolubility of a group with given systems of conditionally seminormal subgroups},
journal = {Trudy Instituta matematiki},
pages = {81--90},
publisher = {mathdoc},
volume = {31},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a8/}
}
TY - JOUR AU - A. A. Trofimuk TI - On the supersolubility of a group with given systems of conditionally seminormal subgroups JO - Trudy Instituta matematiki PY - 2023 SP - 81 EP - 90 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a8/ LA - ru ID - TIMB_2023_31_2_a8 ER -
A. A. Trofimuk. On the supersolubility of a group with given systems of conditionally seminormal subgroups. Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 81-90. http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a8/