Separability of the lattice of $\tau$-closed totally $\omega$-composition formations of finite groups
Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 44-56

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{X}$ be a non-empty class of finite groups. A complete lattice $\theta$ of formations is said $\mathfrak{X}$-separable if for every term $\eta(x_1, \ldots , x_n)$ of signature $\{\cap, \vee_{\theta}\}$, $\theta$-formations $\mathfrak{F}_1, \ldots , \mathfrak{F}_n$, and every group $A\in \mathfrak{X}\cap \eta(\mathfrak{F}_1, \ldots , \mathfrak{F}_n)$ are exists $\mathfrak{X}$-groups $A_1\in\mathfrak{F}_1, \ldots , A_n\in\mathfrak{F}_n$ such that $A\in\eta(\theta\mathrm{form}(A_1), \ldots , \theta\mathrm{form}(A_n))$. In particular, if $\mathfrak{X}=\mathfrak{G}$ is the class of all finite groups then the lattice $\theta$ of formations is said $\mathfrak{G}$-separable or, briefly, separable. It is proved that the lattice $c^{\tau}_{\omega_\infty}$ of all $\tau$-closed totally $\omega$-composition formations is $\mathfrak{G}$-separable.
@article{TIMB_2023_31_2_a5,
     author = {I. P. Los and V. G. Safonov},
     title = {Separability of the lattice of $\tau$-closed totally $\omega$-composition formations of finite groups},
     journal = {Trudy Instituta matematiki},
     pages = {44--56},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a5/}
}
TY  - JOUR
AU  - I. P. Los
AU  - V. G. Safonov
TI  - Separability of the lattice of $\tau$-closed totally $\omega$-composition formations of finite groups
JO  - Trudy Instituta matematiki
PY  - 2023
SP  - 44
EP  - 56
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a5/
LA  - ru
ID  - TIMB_2023_31_2_a5
ER  - 
%0 Journal Article
%A I. P. Los
%A V. G. Safonov
%T Separability of the lattice of $\tau$-closed totally $\omega$-composition formations of finite groups
%J Trudy Instituta matematiki
%D 2023
%P 44-56
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a5/
%G ru
%F TIMB_2023_31_2_a5
I. P. Los; V. G. Safonov. Separability of the lattice of $\tau$-closed totally $\omega$-composition formations of finite groups. Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 44-56. http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a5/