Separability of the lattice of $\tau$-closed totally $\omega$-composition formations of finite groups
Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 44-56
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak{X}$ be a non-empty class of finite groups. A complete lattice $\theta$ of formations is said $\mathfrak{X}$-separable if for every term $\eta(x_1, \ldots , x_n)$ of signature $\{\cap, \vee_{\theta}\}$, $\theta$-formations $\mathfrak{F}_1, \ldots , \mathfrak{F}_n$, and every group $A\in \mathfrak{X}\cap \eta(\mathfrak{F}_1, \ldots , \mathfrak{F}_n)$ are exists $\mathfrak{X}$-groups $A_1\in\mathfrak{F}_1, \ldots , A_n\in\mathfrak{F}_n$ such that $A\in\eta(\theta\mathrm{form}(A_1), \ldots , \theta\mathrm{form}(A_n))$. In particular, if $\mathfrak{X}=\mathfrak{G}$ is the class of all finite groups then the lattice $\theta$ of formations is said $\mathfrak{G}$-separable or, briefly, separable. It is proved that the lattice $c^{\tau}_{\omega_\infty}$ of all $\tau$-closed totally $\omega$-composition formations is $\mathfrak{G}$-separable.
@article{TIMB_2023_31_2_a5,
author = {I. P. Los and V. G. Safonov},
title = {Separability of the lattice of $\tau$-closed totally $\omega$-composition formations of finite groups},
journal = {Trudy Instituta matematiki},
pages = {44--56},
publisher = {mathdoc},
volume = {31},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a5/}
}
TY - JOUR AU - I. P. Los AU - V. G. Safonov TI - Separability of the lattice of $\tau$-closed totally $\omega$-composition formations of finite groups JO - Trudy Instituta matematiki PY - 2023 SP - 44 EP - 56 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a5/ LA - ru ID - TIMB_2023_31_2_a5 ER -
%0 Journal Article %A I. P. Los %A V. G. Safonov %T Separability of the lattice of $\tau$-closed totally $\omega$-composition formations of finite groups %J Trudy Instituta matematiki %D 2023 %P 44-56 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a5/ %G ru %F TIMB_2023_31_2_a5
I. P. Los; V. G. Safonov. Separability of the lattice of $\tau$-closed totally $\omega$-composition formations of finite groups. Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 44-56. http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a5/