On weakly $\mathbb{P}$-subnormal subgroups of finite groups
Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 34-43

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of a finite group $G$ is called a weakly $\mathbb{P}$-subnormal subgroup if $H$ is generated by two subgroups, one of which is subnormal in $G$, and the other one can be connected to $G$ by a subgroup chain with prime indexes. We establish the properties of weakly $\mathbb{P}$-subnormal subgroups and one makes possible to extend the known results on finite groups with sets of $\mathbb{P}$-subnormal subgroups to finite groups with weakly $\mathbb{P}$-subnormal subgroups. In particular, we prove that a finite group with weakly $\mathbb{P}$-subnormal normalizers of Sylow subgroups is supersolvable and a group with weakly $\mathbb{P}$-subnormal $B$-subgroups is metanilpotent.
@article{TIMB_2023_31_2_a4,
     author = {S. I. Lendziankova},
     title = {On weakly $\mathbb{P}$-subnormal subgroups of finite groups},
     journal = {Trudy Instituta matematiki},
     pages = {34--43},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a4/}
}
TY  - JOUR
AU  - S. I. Lendziankova
TI  - On weakly $\mathbb{P}$-subnormal subgroups of finite groups
JO  - Trudy Instituta matematiki
PY  - 2023
SP  - 34
EP  - 43
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a4/
LA  - ru
ID  - TIMB_2023_31_2_a4
ER  - 
%0 Journal Article
%A S. I. Lendziankova
%T On weakly $\mathbb{P}$-subnormal subgroups of finite groups
%J Trudy Instituta matematiki
%D 2023
%P 34-43
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a4/
%G ru
%F TIMB_2023_31_2_a4
S. I. Lendziankova. On weakly $\mathbb{P}$-subnormal subgroups of finite groups. Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 34-43. http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a4/