On the topologies of a hyperspace of a metrizable topological space
Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 15-27

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of the topology $\tau_{inf}$, which is the infimum of the set of all topologies generated by the Hausdorff metrics on the hyperspace $\exp X$ of a metrizable topological space $X$ are studied. As one of the main results necessary and sufficient conditions for the metrizability (with Hausdorff metric) of $\tau_{inf}$ are obtained. We also show that $\exp X$ with the topology $\tau_{inf}$ is first-countable space if and only if a space $X$ is locally compact and second-countable. Besides we investigate relations between $\tau_{inf}$ and other topologies on the $\exp X$: Vietoris topology, Fell topology and locally finite topology.
@article{TIMB_2023_31_2_a2,
     author = {A. S. Bedritskiy and V. L. Timokhovich},
     title = {On the topologies of a hyperspace of a metrizable topological space},
     journal = {Trudy Instituta matematiki},
     pages = {15--27},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a2/}
}
TY  - JOUR
AU  - A. S. Bedritskiy
AU  - V. L. Timokhovich
TI  - On the topologies of a hyperspace of a metrizable topological space
JO  - Trudy Instituta matematiki
PY  - 2023
SP  - 15
EP  - 27
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a2/
LA  - ru
ID  - TIMB_2023_31_2_a2
ER  - 
%0 Journal Article
%A A. S. Bedritskiy
%A V. L. Timokhovich
%T On the topologies of a hyperspace of a metrizable topological space
%J Trudy Instituta matematiki
%D 2023
%P 15-27
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a2/
%G ru
%F TIMB_2023_31_2_a2
A. S. Bedritskiy; V. L. Timokhovich. On the topologies of a hyperspace of a metrizable topological space. Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 15-27. http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a2/