Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2023_31_2_a2, author = {A. S. Bedritskiy and V. L. Timokhovich}, title = {On the topologies of a hyperspace of a metrizable topological space}, journal = {Trudy Instituta matematiki}, pages = {15--27}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a2/} }
TY - JOUR AU - A. S. Bedritskiy AU - V. L. Timokhovich TI - On the topologies of a hyperspace of a metrizable topological space JO - Trudy Instituta matematiki PY - 2023 SP - 15 EP - 27 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a2/ LA - ru ID - TIMB_2023_31_2_a2 ER -
A. S. Bedritskiy; V. L. Timokhovich. On the topologies of a hyperspace of a metrizable topological space. Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 15-27. http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a2/
[1] Hausdorff F., Grundzüge der Mengenlehre, Leipzig, 1914 | MR | Zbl
[2] Vietoris L., “Bereiche zweiter Ordnung”, Monatshefte Math. Phys., 33 (1923), 49–62 | DOI | MR
[3] Michael E. A., “Topologies on spaces of subsets”, Trans. Amer. Math. Soc, 71 (1951), 152–182 | DOI | MR | Zbl
[4] Fell J. M., “A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space”, Proc. Amer. Math. Soc., 13 (1962), 472–476 | DOI | MR | Zbl
[5] Beer G. A., Himmelberg C. J., Prikry K., van Vleck F. S., “The locally finite topology on $2^X$”, Proc. Amer. Math. Soc., 101 (1987), 168–172 | MR | Zbl
[6] Costantini C., Vitolo P., “On the infimum of the Hausdorff metric topologies”, Proc. London Math. Soc., 70 (1995), 441–480 | DOI | MR | Zbl
[7] Ponomarev V. I., “Novoe prostranstvo zamknutykh mnozhestv i mnogoznachnye nepreryvnye otobrazheniya bikompaktov”, Matematicheskii sb., 48(90):2 (1959), 191–212 | Zbl
[8] Beer G., Topologies on Closed and Closed Convex Sets, Kluwer Acad. Publ., Dordrecht, 1993 | MR | Zbl
[9] Naimpally S. A., Sharma P. L., “Fine uniformity and the locally finite hyperspace topology”, Proc. Amer. Math. Soc., 103 (1988), 611–646 | DOI | MR
[10] Engelking R., Obschaya topologiya, Mir, M., 1986
[11] Atsuji M., “Uniform continuity of continuous functions of metric spaces”, Pacific J. Math., 8 (1958), 11–16 | DOI | MR | Zbl
[12] Beer G., Tamaki R., “The infinite value functional and the uniformization of hit-and-miss hyperspace topologies”, Proc. Amer. Math. Soc., 122 (1994), 601–611 | DOI | MR
[13] Hausdorff F., “Erweiterung einer Homöomorphie”, Eund. Math., 16 (1930), 353–360
[14] Aleksandrov P. S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977
[15] Timokhovich V. L., Frolova D. S., “O svoistvakh infimalnoi topologii prostranstva otobrazhenii”, Izv. vuzov. Matem., 2016, no. 4, 87–99 | MR | Zbl
[16] Timokhovich V. L., Frolova D. S., “Ob infimalnoi topologii prostranstva otobrazhenii”, Vestn. BGU. Ser. 1, 2011, no. 2, 136–140 | MR | Zbl