On the topologies of a hyperspace of a metrizable topological space
Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 15-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of the topology $\tau_{inf}$, which is the infimum of the set of all topologies generated by the Hausdorff metrics on the hyperspace $\exp X$ of a metrizable topological space $X$ are studied. As one of the main results necessary and sufficient conditions for the metrizability (with Hausdorff metric) of $\tau_{inf}$ are obtained. We also show that $\exp X$ with the topology $\tau_{inf}$ is first-countable space if and only if a space $X$ is locally compact and second-countable. Besides we investigate relations between $\tau_{inf}$ and other topologies on the $\exp X$: Vietoris topology, Fell topology and locally finite topology.
@article{TIMB_2023_31_2_a2,
     author = {A. S. Bedritskiy and V. L. Timokhovich},
     title = {On the topologies of a hyperspace of a metrizable topological space},
     journal = {Trudy Instituta matematiki},
     pages = {15--27},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a2/}
}
TY  - JOUR
AU  - A. S. Bedritskiy
AU  - V. L. Timokhovich
TI  - On the topologies of a hyperspace of a metrizable topological space
JO  - Trudy Instituta matematiki
PY  - 2023
SP  - 15
EP  - 27
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a2/
LA  - ru
ID  - TIMB_2023_31_2_a2
ER  - 
%0 Journal Article
%A A. S. Bedritskiy
%A V. L. Timokhovich
%T On the topologies of a hyperspace of a metrizable topological space
%J Trudy Instituta matematiki
%D 2023
%P 15-27
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a2/
%G ru
%F TIMB_2023_31_2_a2
A. S. Bedritskiy; V. L. Timokhovich. On the topologies of a hyperspace of a metrizable topological space. Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 15-27. http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a2/

[1] Hausdorff F., Grundzüge der Mengenlehre, Leipzig, 1914 | MR | Zbl

[2] Vietoris L., “Bereiche zweiter Ordnung”, Monatshefte Math. Phys., 33 (1923), 49–62 | DOI | MR

[3] Michael E. A., “Topologies on spaces of subsets”, Trans. Amer. Math. Soc, 71 (1951), 152–182 | DOI | MR | Zbl

[4] Fell J. M., “A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space”, Proc. Amer. Math. Soc., 13 (1962), 472–476 | DOI | MR | Zbl

[5] Beer G. A., Himmelberg C. J., Prikry K., van Vleck F. S., “The locally finite topology on $2^X$”, Proc. Amer. Math. Soc., 101 (1987), 168–172 | MR | Zbl

[6] Costantini C., Vitolo P., “On the infimum of the Hausdorff metric topologies”, Proc. London Math. Soc., 70 (1995), 441–480 | DOI | MR | Zbl

[7] Ponomarev V. I., “Novoe prostranstvo zamknutykh mnozhestv i mnogoznachnye nepreryvnye otobrazheniya bikompaktov”, Matematicheskii sb., 48(90):2 (1959), 191–212 | Zbl

[8] Beer G., Topologies on Closed and Closed Convex Sets, Kluwer Acad. Publ., Dordrecht, 1993 | MR | Zbl

[9] Naimpally S. A., Sharma P. L., “Fine uniformity and the locally finite hyperspace topology”, Proc. Amer. Math. Soc., 103 (1988), 611–646 | DOI | MR

[10] Engelking R., Obschaya topologiya, Mir, M., 1986

[11] Atsuji M., “Uniform continuity of continuous functions of metric spaces”, Pacific J. Math., 8 (1958), 11–16 | DOI | MR | Zbl

[12] Beer G., Tamaki R., “The infinite value functional and the uniformization of hit-and-miss hyperspace topologies”, Proc. Amer. Math. Soc., 122 (1994), 601–611 | DOI | MR

[13] Hausdorff F., “Erweiterung einer Homöomorphie”, Eund. Math., 16 (1930), 353–360

[14] Aleksandrov P. S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977

[15] Timokhovich V. L., Frolova D. S., “O svoistvakh infimalnoi topologii prostranstva otobrazhenii”, Izv. vuzov. Matem., 2016, no. 4, 87–99 | MR | Zbl

[16] Timokhovich V. L., Frolova D. S., “Ob infimalnoi topologii prostranstva otobrazhenii”, Vestn. BGU. Ser. 1, 2011, no. 2, 136–140 | MR | Zbl