On the topologies of a hyperspace of a metrizable topological space
Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 15-27
Voir la notice de l'article provenant de la source Math-Net.Ru
The properties of the topology $\tau_{inf}$, which is the infimum of the set of all topologies generated by the Hausdorff metrics on the hyperspace $\exp X$ of a metrizable topological space $X$ are studied. As one of the main results necessary and sufficient conditions for the metrizability (with Hausdorff metric) of $\tau_{inf}$ are obtained. We also show that $\exp X$ with the topology $\tau_{inf}$ is first-countable space if and only if a space $X$ is locally compact and second-countable. Besides we investigate relations between $\tau_{inf}$ and other topologies on the $\exp X$: Vietoris topology, Fell topology and locally finite topology.
@article{TIMB_2023_31_2_a2,
author = {A. S. Bedritskiy and V. L. Timokhovich},
title = {On the topologies of a hyperspace of a metrizable topological space},
journal = {Trudy Instituta matematiki},
pages = {15--27},
publisher = {mathdoc},
volume = {31},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a2/}
}
TY - JOUR AU - A. S. Bedritskiy AU - V. L. Timokhovich TI - On the topologies of a hyperspace of a metrizable topological space JO - Trudy Instituta matematiki PY - 2023 SP - 15 EP - 27 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a2/ LA - ru ID - TIMB_2023_31_2_a2 ER -
A. S. Bedritskiy; V. L. Timokhovich. On the topologies of a hyperspace of a metrizable topological space. Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 15-27. http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a2/