On conjugate rational trigonometric Fourier series and their approximation properties
Trudy Instituta matematiki, Tome 31 (2023) no. 1, pp. 58-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers conjugate rational trigonometric Fourier series. An integral representation of their partial sums and the Dini test for the convergence of the given series were obtained. The approximation of functions conjugate to $|\sin x|^s$, $s>0$ by partial sums of conjugate rational trigonometric Fourier series is investigated. An integral representation, uniform and point estimates for the above-mentioned approximation were obtained. On the base of the uniform estimate polynomial, a fixed number of geometrically different poles, and general cases were studied.
@article{TIMB_2023_31_1_a7,
     author = {N. Ju. Kazlouskaya and Y. A. Rovba},
     title = {On conjugate rational trigonometric {Fourier} series and their approximation properties},
     journal = {Trudy Instituta matematiki},
     pages = {58--69},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a7/}
}
TY  - JOUR
AU  - N. Ju. Kazlouskaya
AU  - Y. A. Rovba
TI  - On conjugate rational trigonometric Fourier series and their approximation properties
JO  - Trudy Instituta matematiki
PY  - 2023
SP  - 58
EP  - 69
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a7/
LA  - ru
ID  - TIMB_2023_31_1_a7
ER  - 
%0 Journal Article
%A N. Ju. Kazlouskaya
%A Y. A. Rovba
%T On conjugate rational trigonometric Fourier series and their approximation properties
%J Trudy Instituta matematiki
%D 2023
%P 58-69
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a7/
%G ru
%F TIMB_2023_31_1_a7
N. Ju. Kazlouskaya; Y. A. Rovba. On conjugate rational trigonometric Fourier series and their approximation properties. Trudy Instituta matematiki, Tome 31 (2023) no. 1, pp. 58-69. http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a7/

[1] W. H. Young, “Konvergenzbedingunger fur die verwandte Reihe einer Fourierschen Reihe”, Munchener Sitzungsberichte, 41 (1911), 261–371

[2] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961

[3] A. A. Kitbalyan, “Razlozheniya po obobschennym trigonometricheskim sistemam”, Izv. AN Arm. SSR. Ser. fiz. mat. nauk, 16:6 (1956), 3–24 | MR

[4] M. M. Dzhrbashyan, “K teorii ryadov Fure po ratsionalnym funktsiyam”, Izv. AN Arm. SSR. Ser. fiz. mat. nauk, 9:7 (1956), 3–28

[5] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965

[6] F. D. Gakhov, Kraevye zadachi, Nauka, M., 1977

[7] N. Yu. Kazloŭskaya, Ya. A. Roŭba, “Ab apraksimatsyi funktsyi $|\sin x|^S$ chastkovymi sumami tryganametrychnykh ratsyyanalnykh sheragaŭ Fur'e”, Doklady Nats. akad. nauk Belarusi, 65:1 (2021), 11–17 | MR

[8] A. Erdeii, Asimptoticheskie razlozheniya, Fizmatgiz, M., 1962