Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2023_31_1_a4, author = {V. T. Borukhov and G. M. Zayats and O. I. Kostyukova}, title = {Inverse problems of reconstruction of coefficients and transport sources in nonlinear heat conduction equations}, journal = {Trudy Instituta matematiki}, pages = {33--43}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a4/} }
TY - JOUR AU - V. T. Borukhov AU - G. M. Zayats AU - O. I. Kostyukova TI - Inverse problems of reconstruction of coefficients and transport sources in nonlinear heat conduction equations JO - Trudy Instituta matematiki PY - 2023 SP - 33 EP - 43 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a4/ LA - ru ID - TIMB_2023_31_1_a4 ER -
%0 Journal Article %A V. T. Borukhov %A G. M. Zayats %A O. I. Kostyukova %T Inverse problems of reconstruction of coefficients and transport sources in nonlinear heat conduction equations %J Trudy Instituta matematiki %D 2023 %P 33-43 %V 31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a4/ %G ru %F TIMB_2023_31_1_a4
V. T. Borukhov; G. M. Zayats; O. I. Kostyukova. Inverse problems of reconstruction of coefficients and transport sources in nonlinear heat conduction equations. Trudy Instituta matematiki, Tome 31 (2023) no. 1, pp. 33-43. http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a4/
[1] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1979
[2] A. S. Leonov, Reshenie nekorrektno postavlennykh obratnykh zadach: Ocherk teorii, prakticheskie algoritmy i demonstratsii v MATLAB, Izd-vo Librokom, M., 2016
[3] A. A. Samarskii, P. N. Vabischevich, Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, Izd-vo LKI, M., 2009
[4] O. A. Liskovets, Variatsionnye metody resheniya neustoichivykh zadach, Nauka i tekhnika, Minsk, 1981
[5] R. E. Kalman, P. Falb, M. Arbib, Ocherki po matematicheskoi teorii sistem, per. s angl., Editorial URSS, M., 2004 | MR
[6] A. V. Babichev, A. G. Butkovskii, S. Pokholainen, K edinoi geometricheskoi teorii upravleniya, Nauka, M., 2001 | MR
[7] V. T. Borukhov, I. V. Gaishun, V. I. Timoshpolskii, Strukturnye svoistva dinamicheskikh sistem i obratnye zadachi matematicheskoi fiziki, Bel. nauka, Minsk, 2009
[8] O. M. Alifanov, E. A. Artyukhin, S. V. Rumyantsev, Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka, M., 1988
[9] M. N. Ozisik, H. R. B. Orlande, Inverse Heat Transfer: Fundamentals and Applications, Routledge, 2018 | MR
[10] Yu. M. Matsevityi, E. N. But, Splain-identifikatsiya teplofizicheskikh protsessov, Naukova dumka, Kiev, 2010
[11] V. T. Borukhov, V. I. Timoshpolskii, “Funktsionalnaya identifikatsiya gradientnymi metodami nelineinogo koeffitsienta teploprovodnosti. I. Sopryazhennye operatory”, IFZh, 78:4 (2005), 68–74
[12] V. T. Borukhov, V. I. Timoshpolskii, G. M. Zayats, V. A. Tsurko, “Funktsionalnaya identifikatsiya gradientnymi metodami nelineinogo koeffitsienta teploprovodnosti. II. Chislennoe modelirovanie”, IFZh, 78:4 (2005), 75–81
[13] V. T. Borukhov, V. I. Timoshpolskii, M. L. German, G. M. Zayats, V. A. Tsurko, “Vosstanovlenie nelineinykh koeffitsientov teploprovodnosti metodom funktsionalnoi identifikatsii”, Tr. mezhdunar. konf. «Problemy upravleniya i prilozheniya (tekhnika, proizvodstvo, ekonomika)», v. 1, Upravlenie i optimizatsiya, Minsk, 2005, 120–127
[14] V. T. Borukhov, V. I. Timoshpolskii, G. M. Zayats, E. V. Kalinevich, V. A. Tsurko, “Opredelenie nelineinogo koeffitsienta teploprovodnosti dlya izdelii trubchatoi formy metodom funktsionalnoi identifikatsii”, IFZh, 79:6 (2006), 23–30
[15] V. T. Borukhov, G. M. Zayats, V. A. Tsurko, “Primenenie metoda funktsionalnoi identifikatsii dlya resheniya obratnoi zadachi teploprovodnosti v usloviyakh needinstvennosti”, Tr. 4-i mezhdunar. konf. «Analiticheskie metody analiza i differentsialnykh uravnenii», AMADE-2006, v. 2, Minsk, 2006, 32–37
[16] V. T. Borukhov, G. M. Zayats, V. A. Tsurko, “Identifikatsiya koeffitsienta teploprovodnosti v nelineinom parabolicheskom uravnenii s vozmuschennymi vkhodnymi dannymi”, Informatika, 2008, no. 4, 29–38
[17] V. T. Borukhov, V. A. Tsurko, G. M. Zayats, “The functional identification approach for numerical reconstruction of the temperature-dependent thermal-conductivity coefficient”, Int. J. Heat and Mass Transfer, 52 (2009), 232–238 | DOI | Zbl
[18] Yu. M. Matsevityi, S. V. Alekhina, V. T. Borukhov, G. M. Zayats, A. O. Kostikov, “Identifikatsiya koeffitsienta teploprovodnosti dlya kvazistatsionarnykh uravnenii teploprovodnosti”, IFZh, 90:6 (2017), 1364–1370
[19] V. T. Borukhov, G. M. Zayats, The inverse problem of heat conduction in the case of nonuniqueness: a functional identification approach https://ssrn.com/abstract=4060732 | DOI
[20] Yu. G. Evtushenko, V. I. Zubov, “Generalized fast automatic differentiation technique”, J. Comput. Math. Math. Phys., 56:11 (2016), 1819–1833 | DOI | MR | Zbl
[21] V. I. Zubov, “Application of fast automatic differentiation for solving the inverse coefficient problem for the heat equation”, J. Comput. Math. Math. Phys., 56:10 (2016), 1743–1757 | DOI | MR | Zbl
[22] A. F. Albu, Y. G. Evtushenko, V. I. Zubov, “Use of second-order optimization methods for solving the inverse coefficient problem in the three-dimensional formulation”, Proc. of IMM Ural Branch of the Russian Academy of Sciences, 27:4 (2021), 19–34 | MR
[23] L. M. Silverman, “Inversion of multivariate linear systems”, Automat. Control, IEEE Trans., 14 (1969), 270–276 | DOI | MR
[24] V. T. Borukhov, “Inversion of distributed linear time-invariant dynamical systems”, Automation and Remote Control, 43 (1982), 593–599 | MR | Zbl
[25] V. T. Borukhov, G. M. Zayats, “Identification of a time-dependent source term in nonlinear hyperbolic or parabolic heat equation”, Int. J. Heat and Mass Transfer, 91 (2015), 1106–1113 | DOI
[26] V. T. Borukhov, P. N. Vabishchevich, “Numerical solution of the inverse problem of reconstructing a distributed right-hand side of a parabolic equation”, Comput. Phys. Commun., 126:1–2 (2000), 32–36 | DOI | MR | Zbl
[27] V. T. Borukhov, V. I. Korzyuk, “Primenenie neklassicheskikh kraevykh zadach dlya vosstanovleniya granichnykh rezhimov protsessov perenosa”, Vestn. Belorus. un-ta. Ser. 1, 2000, no. 3, 54–57 | Zbl
[28] V. T. Borukhov, P. N. Vabischevich, V. I. Korzyuk, “Svedenie odnogo klassa obratnykh zadach teploprovodnosti k pryamym nachalno-kraevym zadacham”, IFZh, 73:4 (2000), 744–747
[29] V. I. Korzyuk, V. T. Borukhov, “Smeshannye zadachi dlya uravneniya teploprovodnosti s integro-differentsialnymi usloviyami na granitse”, Vestn. Belorus. un-ta. Ser. 1, 2002, no. 1, 57–64
[30] V. T. Borukhov, G. M. Zayats, “Identifikatsiya istochnikov protsessov perenosa, opisyvaemykh uravneniyami parabolicheskogo tipa”, Tr. IX Mezhdunar. konf. «Identifikatsiya sistem i zadachi upravleniya», SICPRO'12 (Moskva, 30 yanvarya–2 fevralya 2012 g.), Institut problem upravleniya im. V. A. Trapeznikova RAN, 94–108
[31] V. T. Borukhov, G. M. Zayats, “Vosstanovlenie vkhodnykh signalov dlya odnogo klassa kvazilineinykh sistem giperbolicheskogo tipa”, XII Vserossiiskoe soveschanie po problemam upravleniya VSPU-2014, trudy (Moskva, 16-19 iyunya 2014 g.), IPU RAN, M., 2014, 2777–2786
[32] S. L. Sobolev, “Lokalno-neravnovesnye modeli protsessov perenosa”, Uspekhi fiz. nauk, 167:10 (1997), 1095–1106 | DOI
[33] D. Jou, J. Casas-Vazquez, J. Lebon, Extended Irreversible Thermodynamics, Springer, Berlin, 2010 | MR | Zbl
[34] V. T. Borukhov, G. M. Zayats, Yu. V. Stetsenko, R. V. Konovalov, “Opredelenie koeffitsientov teplootdachi v protsesse zatverdevaniya otlivki v struinom kristallizatore”, IFZh, 85:1 (2012), 181–187
[35] J. V. Beck, B. Blackwell, C. R. St. Clair, Inverse Heat Conduction: Ill-Posed Problems, Wiley, New York, 1985 | MR | Zbl
[36] V. T. Borukhov, O. I. Kostyukova, M. A. Kurdina, “Tracking of the preset program of weighted temperatures and reconstruction of heat transfer coefficients”, J. Eng. Phys. Thermophys., 83:3 (2010), 622–631 | DOI
[37] V. T. Borukhov, O. I. Kostyukova, “Identification of time-dependent coefficients of heat transfer by the method of suboptimal stage-by-stage optimization”, Int. J. Heat and Mass Transfer., 59 (2013), 286–294 | DOI
[38] V. T. Borukhov, O. I. Kostyukova, “Reconstruction of the Surface Heat Flux for a Quasilinear System of the Hyperbolic Type Heat-Conduction Equations”, Communications in Computer and Information Science, 499 (2015), 49–67 | DOI
[39] V. T. Borukhov, O. I. Kostyukova, “Reconstruction of heat transfer coefficients using the approach of stage-by-stage suboptimal optimization and Huber-Tikhonov filtering of input data”, Automatic Control and Computer Sciences, 47:6 (2013), 289–299 | DOI | MR
[40] O. I. Kostyukova, E. A. Kostina, N. M. Fedortsova, “Parametric optimal control problems with weighted $L_1$-norm in the cost function”, Automatic Control and Computer Sciences, 44:4 (2010), 179–190 | DOI
[41] O. I. Kostyukova, E. A. Kostina, N. M. Fedortsova, “Parametricheskie zadachi optimalnogo upravleniya so vzveshennymi $L_1$- i $L_2$-normami v kriterii kachestva”, Tr. In-ta matematiki, 19:2 (2011), 47–59 | Zbl
[42] O. M. Alifanov, Identifikatsiya protsessov teploobmena letatelnykh apparatov (vvedenie v teoriyu obratnykh zadach teploobmena), Mashinostroenie, M., 1979
[43] P. J. Huber, “Robust estimation of a location parameter”, Annals Math. Stat., 35:1 (1964), 73–101 | DOI | MR | Zbl
[44] V. T. Borukhov, “Obratnaya zadacha Shturma-Liuvillya v teorii realizatsii lineinykh dinamicheskikh sistem”, Avtomatika i telemekhanika, 1994, no. 4, 13–21