Non-existence of a short algorithm for multiplication of $3\times 3$ matrices whose group is $S_4\times S_3$,~II
Trudy Instituta matematiki, Tome 31 (2023) no. 1, pp. 101-111
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that there is no algorithm for multiplication of $3\times 3$ matrices of multiplicative length $\leqslant 23$ that is invariant under a certain group isomorphic to $S_4\times S_3$. The proof uses description of the orbits of this group on decomposable tensors in the tensor cube $(M_3(\mathbb{C}))^{\otimes 3}$ which was obtained earlier.
@article{TIMB_2023_31_1_a11,
author = {V. P. Burichenko},
title = {Non-existence of a short algorithm for multiplication of $3\times 3$ matrices whose group is $S_4\times S_3${,~II}},
journal = {Trudy Instituta matematiki},
pages = {101--111},
publisher = {mathdoc},
volume = {31},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a11/}
}
TY - JOUR AU - V. P. Burichenko TI - Non-existence of a short algorithm for multiplication of $3\times 3$ matrices whose group is $S_4\times S_3$,~II JO - Trudy Instituta matematiki PY - 2023 SP - 101 EP - 111 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a11/ LA - en ID - TIMB_2023_31_1_a11 ER -
%0 Journal Article %A V. P. Burichenko %T Non-existence of a short algorithm for multiplication of $3\times 3$ matrices whose group is $S_4\times S_3$,~II %J Trudy Instituta matematiki %D 2023 %P 101-111 %V 31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a11/ %G en %F TIMB_2023_31_1_a11
V. P. Burichenko. Non-existence of a short algorithm for multiplication of $3\times 3$ matrices whose group is $S_4\times S_3$,~II. Trudy Instituta matematiki, Tome 31 (2023) no. 1, pp. 101-111. http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a11/