On the solvability and factorization of some $\pi$-solvable irreducible linear groups of primary degree. Part II
Trudy Instituta matematiki, Tome 31 (2023) no. 1, pp. 88-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is the second in a series of papers where for a set $\pi$ of odd primes $\pi$-solvable finite irreducible complex linear groups of degree $2|H|+1$ whose Hall $\pi$-subgroups are $TI$-subgroups and are not normal in groups. The goal of this series is to prove the solvability and determine the factorization of such groups. The proof of the theorem is continued. Further properties of the minimal counterexample to the theorem are established.
@article{TIMB_2023_31_1_a10,
     author = {A. A. Yadchenko},
     title = {On the solvability and factorization of some $\pi$-solvable irreducible linear groups of primary degree. {Part~II}},
     journal = {Trudy Instituta matematiki},
     pages = {88--100},
     year = {2023},
     volume = {31},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a10/}
}
TY  - JOUR
AU  - A. A. Yadchenko
TI  - On the solvability and factorization of some $\pi$-solvable irreducible linear groups of primary degree. Part II
JO  - Trudy Instituta matematiki
PY  - 2023
SP  - 88
EP  - 100
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a10/
LA  - ru
ID  - TIMB_2023_31_1_a10
ER  - 
%0 Journal Article
%A A. A. Yadchenko
%T On the solvability and factorization of some $\pi$-solvable irreducible linear groups of primary degree. Part II
%J Trudy Instituta matematiki
%D 2023
%P 88-100
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a10/
%G ru
%F TIMB_2023_31_1_a10
A. A. Yadchenko. On the solvability and factorization of some $\pi$-solvable irreducible linear groups of primary degree. Part II. Trudy Instituta matematiki, Tome 31 (2023) no. 1, pp. 88-100. http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a10/

[1] A. A. Yadchenko, “O razreshimosti i faktorizatsii nekotorykh $\pi$-razreshimykh neprivodimykh lineinykh grupp primarnoi stepeni. Chast I”, Tr. In-ta matematiki, 30:1-2 (2022), 84–98

[2] D. Gorenstein, Finite groups, Harper and Row, New York, 1968 | MR | Zbl

[3] I. M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976 | MR | Zbl

[4] J. Dixon, The structure of linear groups, Butler and Tanner Ltd., L., 1971

[5] A. A. Yadchenko, A. V. Romanovskii, “K probleme Aizeksa o konechnykh prazreshimykh lineinykh gruppakh”, Matem. zametki, 69:1 (2001), 144–152 | DOI | MR | Zbl

[6] A. A. Yadchenko, “O-razreshimykh neprivodimykh lineinykh gruppakh s khollovoi TI - podgruppoi nechetnogo poryadka I”, Tr. In-ta matematiki, 16:2 (2008), 118–130 | Zbl