Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2023_31_1_a10, author = {A. A. Yadchenko}, title = {On the solvability and factorization of some $\pi$-solvable irreducible linear groups of primary degree. {Part~II}}, journal = {Trudy Instituta matematiki}, pages = {88--100}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a10/} }
TY - JOUR AU - A. A. Yadchenko TI - On the solvability and factorization of some $\pi$-solvable irreducible linear groups of primary degree. Part~II JO - Trudy Instituta matematiki PY - 2023 SP - 88 EP - 100 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a10/ LA - ru ID - TIMB_2023_31_1_a10 ER -
%0 Journal Article %A A. A. Yadchenko %T On the solvability and factorization of some $\pi$-solvable irreducible linear groups of primary degree. Part~II %J Trudy Instituta matematiki %D 2023 %P 88-100 %V 31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a10/ %G ru %F TIMB_2023_31_1_a10
A. A. Yadchenko. On the solvability and factorization of some $\pi$-solvable irreducible linear groups of primary degree. Part~II. Trudy Instituta matematiki, Tome 31 (2023) no. 1, pp. 88-100. http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a10/
[1] A. A. Yadchenko, “O razreshimosti i faktorizatsii nekotorykh $\pi$-razreshimykh neprivodimykh lineinykh grupp primarnoi stepeni. Chast I”, Tr. In-ta matematiki, 30:1-2 (2022), 84–98
[2] D. Gorenstein, Finite groups, Harper and Row, New York, 1968 | MR | Zbl
[3] I. M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976 | MR | Zbl
[4] J. Dixon, The structure of linear groups, Butler and Tanner Ltd., L., 1971
[5] A. A. Yadchenko, A. V. Romanovskii, “K probleme Aizeksa o konechnykh prazreshimykh lineinykh gruppakh”, Matem. zametki, 69:1 (2001), 144–152 | DOI | MR | Zbl
[6] A. A. Yadchenko, “O-razreshimykh neprivodimykh lineinykh gruppakh s khollovoi TI - podgruppoi nechetnogo poryadka I”, Tr. In-ta matematiki, 16:2 (2008), 118–130 | Zbl