On rational approximations of the Markov function on the segment by the Fejer sums with a fixed number of poles
Trudy Instituta matematiki, Tome 30 (2022) no. 1, pp. 63-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

Approximations of Markov functions on the segment $[-1,~1]$ by Fejer sums of the rational integral Fourier operator–Chebyshev with restrictions on the number of geometrically different poles are investigated. An integral representation of approximations and an estimate of uniform approximations are obtained. In the case when the measure $\mu$ satisfies the following conditions $\mathrm{supp} \mu = [1,a], a>1,$ $ d\mu(t)= \varphi(t) dt $ and $ \varphi(t)\asymp(t-1)^\alpha $ on $ [1,a], $ estimates of pointwise and uniform approximations are established, the asymptotic expression for $n\to \infty$ majorants of uniform approximations. The optimal values of the parameters providing the highest rate of decrease of this majorant are found. As a consequence, estimates of the corresponding uniform approximations of some elementary functions are established. It follows from the results obtained that rational approximations by Fejer sums of the Markov function with measures $\mu(t)$ with "low smoothness"  are better in terms of order than the corresponding polynomial ones.
@article{TIMB_2022_30_1_a7,
     author = {P. G. Patseika and Y. A. Rovba},
     title = {On rational approximations of the {Markov} function on the segment by the {Fejer} sums with a fixed number of poles},
     journal = {Trudy Instituta matematiki},
     pages = {63--83},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a7/}
}
TY  - JOUR
AU  - P. G. Patseika
AU  - Y. A. Rovba
TI  - On rational approximations of the Markov function on the segment by the Fejer sums with a fixed number of poles
JO  - Trudy Instituta matematiki
PY  - 2022
SP  - 63
EP  - 83
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a7/
LA  - ru
ID  - TIMB_2022_30_1_a7
ER  - 
%0 Journal Article
%A P. G. Patseika
%A Y. A. Rovba
%T On rational approximations of the Markov function on the segment by the Fejer sums with a fixed number of poles
%J Trudy Instituta matematiki
%D 2022
%P 63-83
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a7/
%G ru
%F TIMB_2022_30_1_a7
P. G. Patseika; Y. A. Rovba. On rational approximations of the Markov function on the segment by the Fejer sums with a fixed number of poles. Trudy Instituta matematiki, Tome 30 (2022) no. 1, pp. 63-83. http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a7/

[1] Fejér L., “Untersuchungen über Fouriersche Reihen”, Mathematische Annalen, 58 (1904), 51–69 | DOI | MR

[2] Lebesgue H., “Sur les intégrales singuliéres”, Annales de la faculté des sciences de Toulouse 3e série, 1 (1909), 25–117 | DOI | MR

[3] Bernstein S., Sur l'ordre de la meilleure approximation des fonctions continues par des polynomés de degré donné, Hayez, imprimeur de l'Académie royale de Belgique, Bruxelles, 1912

[4] Nikolskii S.M., “Ob asimptoticheskom povedenii ostatka pri priblizhenii funktsii, udovletvoryayuschikh usloviyu Lipshitsa, summami Feiera”, Izvestiya AN SSSR. Ser. matem., 4:6 (1940), 501–508 | Zbl

[5] Zygmund A., “On the degree of approximation of functions by Fejér means”, Bulletin of the American Mathematical Society, 51:4 (1945), 274–278 | DOI | MR | Zbl

[6] Novikov O.A., Rovenskaya O.G., “Priblizhenie klassov integralov Puassona summami Feiera”, Kompyuternye issledovaniya i modelirovanie, 7:4 (2015), 813–819 | MR

[7] Dzhrbashyan M.M., “K teorii ryadov Fure po ratsionalnym funktsiyam”, Izvestiya AN Armyanskoi SSR. Ser. matematika, 9:7 (1956), 1–27

[8] Rusak V.N., Ratsionalnye funktsii kak apparat priblizheniya, Izdatelstvo BGU, Minsk, 1979

[9] Petrushev P.P., Popov V.A., Rational approximation of real functions, Cambridge university press, Cambridge, 1987 | MR | Zbl

[10] Rusak V.N., “Tochnye poryadki nailuchshikh ratsionalnykh priblizhenii na klassakh funktsii, predstavimykh v vide svertki”, Doklady AN SSSR, 279:4 (1984), 810–812 | MR | Zbl

[11] Rusak V.N., “Tochnye poryadkovye otsenki dlya nailuchshikh ratsionalnykh priblizhenii na klassakh funktsii, predstavimykh v vide svertki”, Matematicheskii sbornik, 128:4 (1985), 492–515 | MR

[12] Pekarskii A.A., “Chebyshevskie ratsionalnye priblizheniya v kruge, na okruzhnosti i na otrezke”, Matematicheskii sbornik, 133:1(5) (1987), 86–102 | Zbl

[13] Rovba E.A., “Ratsionalnye integralnye operatory na otrezke”, Vestnik BGU, 1:1 (1996), 34–39 | Zbl

[14] Dzhrbashyan M.M., Kitbalyan A.A., “Ob odnom obobschenii polinomov Chebysheva”, Doklady AN Armyanskoi SSR, 38:5 (1964), 263–270 | MR | Zbl

[15] Smotritskii K.A., “Approksimatsiya ratsionalnymi operatorami Valle Pussena na otrezke”, Trudy Instituta matematiki NAN Belarusi, 9 (2001), 136–139

[16] Smotritskii K.A., “O priblizhenii vypuklykh funktsii ratsionalnymi integralnymi operatorami na otrezke”, Vestnik BGU, 1:3 (2005), 64–70 | MR | Zbl

[17] Markov A.A., Izbrannye trudy po teorii nepreryvnykh drobei i teorii funktsii, naimenee uklonyayuschikhsya ot nulya, Gostekhizdat, M., 1948 | MR

[18] Gonchar A.A., “O skorosti ratsionalnoi approksimatsii nekotorykh analiticheskikh funktsii”, Matematicheskii sbornik, 105:2 (1978), 147–163 | MR | Zbl

[19] Ganelius T., “Ortogonal polynomials and rational approximation of holomorphic function”, To the Memory of Paul Turan, Studies in Pure Mathematics, ed. P. Erdos, Birkhauser Verlag, Basel, 1978, 237–243 | MR

[20] Andersson J.-E., “Best Rational Approximation to Markov Functions”, Journal of approximation theory, 76 (1994), 219–232 | DOI | MR | Zbl

[21] Pekarskii A.A., “Nailuchshie ravnomernye ratsionalnye priblizheniya funktsii Markova”, Algebra i analiz, 7:2 (1995), 121–132 | Zbl

[22] Vyacheslavov N.S., Mochalina E.P., “Rational approximations of functions of Markov–Stieltjes type in Hardy spaces”, Moscow University Mathematics Bulletin, 63:4 (2008), 125–134 | DOI | MR | Zbl

[23] Starovoitov A.P., Labych Yu.A., “Ratsionalnaya approksimatsiya funktsii Markova, porozhdennykh borelevskimi merami stepennogo tipa”, Problemy fiziki, matematiki i tekhniki, 1:1 (2009), 69–73 | MR | Zbl

[24] Prokhorov V.A., “On rational approximation of Markov functions on finite sets”, Journal of Approximation Theory, 191 (2015), 94–117 | DOI | MR | Zbl

[25] Pekarskii A.A., Rovba E.A., “Ravnomernye priblizheniya funktsii Stiltesa posredstvom ortoproektsii na mnozhestvo ratsionalnykh funktsii”, Matematicheskie zametki, 65:3 (1999), 362–368 | DOI | MR | Zbl

[26] Takenaka S., “On the orthogonal functions and a new formula of interpolations”, Japanese Journal of Mathematics, 2 (1925), 129–145 | DOI

[27] Malmquist F., “Sur la determination d'une classe functions analytiques par leurs dans un ensemble donne de points”, Compute Rendus Six. Cong. math. scand. (Kopenhagen, Denmark, 1925), 253–259

[28] Rovba E.A., Mikulich E.G., “Constants in rational approximation of Markov–Stieltjes functions with fixed number of poles”, Vesnik of Y. Kupala State University, 1(148) (2013), 12–20

[29] Lungu K.N., “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Matematicheskii sbornik, 86(128):2(10) (1971), 314–324 | Zbl

[30] Lungu K.N., “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Sibirskii matematicheskii zhurnal, 15:2 (1984), 151–160 | MR

[31] Rovba, E. A., “Ob odnom pryamom metode v ratsionalnoi approksimatsii”, Doklady AN BSSR, 23:11 (1979), 968–971 | MR | Zbl

[32] Patseika P.G., Rouba Y.A., Smatrytski K.A., “On one rational integral operator of Fourier–Chebyshev type and approximation of Markov functions”, Journal of the Belarusian State University. Mathematics and Informatics, 2 (2020), 6–27 | DOI | MR

[33] Sidorov Yu.V., Fedoryuk M.V., Shabunin M.I., Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1989 | MR

[34] Evgrafov M.A., Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | MR

[35] Fedoryuk M.V., Asimptotika. Integraly i ryady, Nauka, M., 1987 | MR

[36] Potseiko P.G., Rovba E.A., “Summy Feiera ratsionalnogo ryada Fure–Chebysheva i approksimatsii funktsii $|x|^s$”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2019, no. 3, 18–34 | MR | Zbl

[37] Potseiko, P.G., Rovba E.A., “O ratsionalnykh summakh Abelya–Puassona na otrezke i approksimatsiyakh funktsii Markova”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 3 (2021), 6–24 | MR

[38] Bernshtein S.N., Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, v. 1, Glavnaya redaktsiya obschetekhnicheskoi literatury, M.–L., 1937