Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2022_30_1_a7, author = {P. G. Patseika and Y. A. Rovba}, title = {On rational approximations of the {Markov} function on the segment by the {Fejer} sums with a fixed number of poles}, journal = {Trudy Instituta matematiki}, pages = {63--83}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a7/} }
TY - JOUR AU - P. G. Patseika AU - Y. A. Rovba TI - On rational approximations of the Markov function on the segment by the Fejer sums with a fixed number of poles JO - Trudy Instituta matematiki PY - 2022 SP - 63 EP - 83 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a7/ LA - ru ID - TIMB_2022_30_1_a7 ER -
%0 Journal Article %A P. G. Patseika %A Y. A. Rovba %T On rational approximations of the Markov function on the segment by the Fejer sums with a fixed number of poles %J Trudy Instituta matematiki %D 2022 %P 63-83 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a7/ %G ru %F TIMB_2022_30_1_a7
P. G. Patseika; Y. A. Rovba. On rational approximations of the Markov function on the segment by the Fejer sums with a fixed number of poles. Trudy Instituta matematiki, Tome 30 (2022) no. 1, pp. 63-83. http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a7/
[1] Fejér L., “Untersuchungen über Fouriersche Reihen”, Mathematische Annalen, 58 (1904), 51–69 | DOI | MR
[2] Lebesgue H., “Sur les intégrales singuliéres”, Annales de la faculté des sciences de Toulouse 3e série, 1 (1909), 25–117 | DOI | MR
[3] Bernstein S., Sur l'ordre de la meilleure approximation des fonctions continues par des polynomés de degré donné, Hayez, imprimeur de l'Académie royale de Belgique, Bruxelles, 1912
[4] Nikolskii S.M., “Ob asimptoticheskom povedenii ostatka pri priblizhenii funktsii, udovletvoryayuschikh usloviyu Lipshitsa, summami Feiera”, Izvestiya AN SSSR. Ser. matem., 4:6 (1940), 501–508 | Zbl
[5] Zygmund A., “On the degree of approximation of functions by Fejér means”, Bulletin of the American Mathematical Society, 51:4 (1945), 274–278 | DOI | MR | Zbl
[6] Novikov O.A., Rovenskaya O.G., “Priblizhenie klassov integralov Puassona summami Feiera”, Kompyuternye issledovaniya i modelirovanie, 7:4 (2015), 813–819 | MR
[7] Dzhrbashyan M.M., “K teorii ryadov Fure po ratsionalnym funktsiyam”, Izvestiya AN Armyanskoi SSR. Ser. matematika, 9:7 (1956), 1–27
[8] Rusak V.N., Ratsionalnye funktsii kak apparat priblizheniya, Izdatelstvo BGU, Minsk, 1979
[9] Petrushev P.P., Popov V.A., Rational approximation of real functions, Cambridge university press, Cambridge, 1987 | MR | Zbl
[10] Rusak V.N., “Tochnye poryadki nailuchshikh ratsionalnykh priblizhenii na klassakh funktsii, predstavimykh v vide svertki”, Doklady AN SSSR, 279:4 (1984), 810–812 | MR | Zbl
[11] Rusak V.N., “Tochnye poryadkovye otsenki dlya nailuchshikh ratsionalnykh priblizhenii na klassakh funktsii, predstavimykh v vide svertki”, Matematicheskii sbornik, 128:4 (1985), 492–515 | MR
[12] Pekarskii A.A., “Chebyshevskie ratsionalnye priblizheniya v kruge, na okruzhnosti i na otrezke”, Matematicheskii sbornik, 133:1(5) (1987), 86–102 | Zbl
[13] Rovba E.A., “Ratsionalnye integralnye operatory na otrezke”, Vestnik BGU, 1:1 (1996), 34–39 | Zbl
[14] Dzhrbashyan M.M., Kitbalyan A.A., “Ob odnom obobschenii polinomov Chebysheva”, Doklady AN Armyanskoi SSR, 38:5 (1964), 263–270 | MR | Zbl
[15] Smotritskii K.A., “Approksimatsiya ratsionalnymi operatorami Valle Pussena na otrezke”, Trudy Instituta matematiki NAN Belarusi, 9 (2001), 136–139
[16] Smotritskii K.A., “O priblizhenii vypuklykh funktsii ratsionalnymi integralnymi operatorami na otrezke”, Vestnik BGU, 1:3 (2005), 64–70 | MR | Zbl
[17] Markov A.A., Izbrannye trudy po teorii nepreryvnykh drobei i teorii funktsii, naimenee uklonyayuschikhsya ot nulya, Gostekhizdat, M., 1948 | MR
[18] Gonchar A.A., “O skorosti ratsionalnoi approksimatsii nekotorykh analiticheskikh funktsii”, Matematicheskii sbornik, 105:2 (1978), 147–163 | MR | Zbl
[19] Ganelius T., “Ortogonal polynomials and rational approximation of holomorphic function”, To the Memory of Paul Turan, Studies in Pure Mathematics, ed. P. Erdos, Birkhauser Verlag, Basel, 1978, 237–243 | MR
[20] Andersson J.-E., “Best Rational Approximation to Markov Functions”, Journal of approximation theory, 76 (1994), 219–232 | DOI | MR | Zbl
[21] Pekarskii A.A., “Nailuchshie ravnomernye ratsionalnye priblizheniya funktsii Markova”, Algebra i analiz, 7:2 (1995), 121–132 | Zbl
[22] Vyacheslavov N.S., Mochalina E.P., “Rational approximations of functions of Markov–Stieltjes type in Hardy spaces”, Moscow University Mathematics Bulletin, 63:4 (2008), 125–134 | DOI | MR | Zbl
[23] Starovoitov A.P., Labych Yu.A., “Ratsionalnaya approksimatsiya funktsii Markova, porozhdennykh borelevskimi merami stepennogo tipa”, Problemy fiziki, matematiki i tekhniki, 1:1 (2009), 69–73 | MR | Zbl
[24] Prokhorov V.A., “On rational approximation of Markov functions on finite sets”, Journal of Approximation Theory, 191 (2015), 94–117 | DOI | MR | Zbl
[25] Pekarskii A.A., Rovba E.A., “Ravnomernye priblizheniya funktsii Stiltesa posredstvom ortoproektsii na mnozhestvo ratsionalnykh funktsii”, Matematicheskie zametki, 65:3 (1999), 362–368 | DOI | MR | Zbl
[26] Takenaka S., “On the orthogonal functions and a new formula of interpolations”, Japanese Journal of Mathematics, 2 (1925), 129–145 | DOI
[27] Malmquist F., “Sur la determination d'une classe functions analytiques par leurs dans un ensemble donne de points”, Compute Rendus Six. Cong. math. scand. (Kopenhagen, Denmark, 1925), 253–259
[28] Rovba E.A., Mikulich E.G., “Constants in rational approximation of Markov–Stieltjes functions with fixed number of poles”, Vesnik of Y. Kupala State University, 1(148) (2013), 12–20
[29] Lungu K.N., “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Matematicheskii sbornik, 86(128):2(10) (1971), 314–324 | Zbl
[30] Lungu K.N., “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Sibirskii matematicheskii zhurnal, 15:2 (1984), 151–160 | MR
[31] Rovba, E. A., “Ob odnom pryamom metode v ratsionalnoi approksimatsii”, Doklady AN BSSR, 23:11 (1979), 968–971 | MR | Zbl
[32] Patseika P.G., Rouba Y.A., Smatrytski K.A., “On one rational integral operator of Fourier–Chebyshev type and approximation of Markov functions”, Journal of the Belarusian State University. Mathematics and Informatics, 2 (2020), 6–27 | DOI | MR
[33] Sidorov Yu.V., Fedoryuk M.V., Shabunin M.I., Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1989 | MR
[34] Evgrafov M.A., Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | MR
[35] Fedoryuk M.V., Asimptotika. Integraly i ryady, Nauka, M., 1987 | MR
[36] Potseiko P.G., Rovba E.A., “Summy Feiera ratsionalnogo ryada Fure–Chebysheva i approksimatsii funktsii $|x|^s$”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2019, no. 3, 18–34 | MR | Zbl
[37] Potseiko, P.G., Rovba E.A., “O ratsionalnykh summakh Abelya–Puassona na otrezke i approksimatsiyakh funktsii Markova”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 3 (2021), 6–24 | MR
[38] Bernshtein S.N., Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, v. 1, Glavnaya redaktsiya obschetekhnicheskoi literatury, M.–L., 1937