Wallman extension and hyperspace. Functorial properties
Trudy Instituta matematiki, Tome 30 (2022) no. 1, pp. 37-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

D. Harris introduced the concept of a $WO$-map and proved that any $WO$-map $X\xrightarrow{f}Y$ admits a continuous extension $\omega X\xrightarrow{\widetilde{f}}\omega Y$ ( $\omega X$– Wallman compactification of the space $X$). The paper investigates modifications of the condition $(WO)$ ($WO(2)$, $WO(2$-$2)$, $WO(comb)$). It is shown that any $WO(2$-$2)$-mapping $X\xrightarrow{f}Y$ ($X$ and $Y$ are $T_1$-spaces) admits a continuous extension to the mapping $\exp X\xrightarrow{\overline{f}}\exp Y$ ($\exp X$ is a hyperspace of the space $X$ with a Vietoris topology), and if $X$ and $Y$ are regular and $f$ is a $WO$-mapping, then $f$ can be continuous extended to the mapping ${{\exp }^{n}}\omega X\xrightarrow{{{f}_{n}}}{{\exp }^{n}}\omega Y$ (${{\exp }^{n}}\omega X=\underbrace{\exp ...\exp }_{n}\omega X,\ n\in \mathbb{N}$ ). Thus, on the categories $\mathcal{K}_1$ of $T_1$-spaces and $WO(2$-$2)$- maps and $\mathcal{K}_2$ of $T_3$-spaces and $WO$-maps, the covariant functors $\exp $ and ${{\exp }^{n}}\omega$ are defined respectively.
@article{TIMB_2022_30_1_a4,
     author = {H. O. Kukrak and V. L. Timokhovich},
     title = {Wallman extension and hyperspace. {Functorial} properties},
     journal = {Trudy Instituta matematiki},
     pages = {37--43},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a4/}
}
TY  - JOUR
AU  - H. O. Kukrak
AU  - V. L. Timokhovich
TI  - Wallman extension and hyperspace. Functorial properties
JO  - Trudy Instituta matematiki
PY  - 2022
SP  - 37
EP  - 43
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a4/
LA  - ru
ID  - TIMB_2022_30_1_a4
ER  - 
%0 Journal Article
%A H. O. Kukrak
%A V. L. Timokhovich
%T Wallman extension and hyperspace. Functorial properties
%J Trudy Instituta matematiki
%D 2022
%P 37-43
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a4/
%G ru
%F TIMB_2022_30_1_a4
H. O. Kukrak; V. L. Timokhovich. Wallman extension and hyperspace. Functorial properties. Trudy Instituta matematiki, Tome 30 (2022) no. 1, pp. 37-43. http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a4/

[1] Engelking R., Obschaya topologiya, Mir, M., 1986

[2] Harris D., “The Wallman compactification as a functor”, General Topology and its Applications, 1:3 (1971), 273–281 | DOI | MR | Zbl

[3] Hajek D., “A Characterization of $T_3$-spaces”, Indiana University Math. Journal, 23:1 (1973), 23–25 | DOI | MR | Zbl

[4] Kukrak G.O., “Ob otobrazheniyakh eksponentsialnykh prostranstv”, Vestnik BGU. Ser. 1, 1999, no. 3, 56–59 | MR | Zbl

[5] Loncar I., “Hyperspaces of the Inverse Limit Space”, Glasnik Matematicki, 27:47 (1992), 71–84 | MR | Zbl

[6] Fedorchuk V.V, Filippov V.V., Obschaya topologiya. Osnovnye konstruktsii, Fizmatlit, M., 2006

[7] Fedorchuk V.V., “O nekotorykh geometricheskikh svoistvakh kovariantnykh funktorov”, Uspekhi matematicheskikh nauk, 39:5 (1984), 169–208 | MR | Zbl

[8] Soban M., “Note sur la topology exponentialle”, Fund. Math., 71:5 (1971), 21–41 | MR