New proof of Uspenskij selection theorem
Trudy Instituta matematiki, Tome 30 (2022) no. 1, pp. 30-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a new proof of the Uspenskij selection theorem for $\mathcal{C}$ -spaces. This result allows us to generalize the Uspenskij theorem to stratified $\mathcal{C}$ -spaces.
@article{TIMB_2022_30_1_a3,
     author = {Dz. N. Kazhamiakin},
     title = {New proof of {Uspenskij} selection theorem},
     journal = {Trudy Instituta matematiki},
     pages = {30--36},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a3/}
}
TY  - JOUR
AU  - Dz. N. Kazhamiakin
TI  - New proof of Uspenskij selection theorem
JO  - Trudy Instituta matematiki
PY  - 2022
SP  - 30
EP  - 36
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a3/
LA  - ru
ID  - TIMB_2022_30_1_a3
ER  - 
%0 Journal Article
%A Dz. N. Kazhamiakin
%T New proof of Uspenskij selection theorem
%J Trudy Instituta matematiki
%D 2022
%P 30-36
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a3/
%G ru
%F TIMB_2022_30_1_a3
Dz. N. Kazhamiakin. New proof of Uspenskij selection theorem. Trudy Instituta matematiki, Tome 30 (2022) no. 1, pp. 30-36. http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a3/

[1] Uspenskij V.V., “A selection theorem for $\mathcal{C}$-spaces”, Topology and its Applications, 85 (1998), 351–374 | DOI | MR | Zbl

[2] Michael E., “Continuous selections. III”, Ann. of Math. (2), 65 (1957), 375–390 | DOI | MR | Zbl

[3] Ageev S.M., “Nepoliedralnoe dokazatelstvo konechnomernoi selektsionnoi teoremy Maikla”, Fundament. i prikl. matem., 11:4 (2005), 3–22

[4] Engelking R., Obschaya topologiya, Mir, M., 1986

[5] Hu S., Theory of Retracts, Wayne State University Press, Detroit, 1965 | MR | Zbl