A modification of the Harris ($WO$) condition and functor properties of the hyperspace and Wallman compactification
Trudy Instituta matematiki, Tome 30 (2022) no. 1, pp. 4-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

A necessary and sufficient condition for the existence of a continuous extension $\text{exp} X \overset{\bar{f}}{\longrightarrow} \text{exp} Y$ of a map $X \overset{f}{\longrightarrow} Y$ is found, where $\text{exp} X$ is a hyperspace of the space $X$ endowed with Vietoris topology, and the map $\bar{f}$ is defined as $\bar{f}(F) = [f(F)]_Y$ ($[ \cdot ]_Y $ is a closure operator on the space $Y$). The obtained condition (named as $(\omega o)$ condition) is a modification of the Harris $(WO)$ condition. It is also shown, that ($\omega o$) condition is sufficient and in the case of regularity of a space $Y$ it is necessary for the existence of multivalued upper semi-continuous extension $\omega X \overset{\tilde{f}}{\longrightarrow} \omega Y$ of a map $f$ which satisfies some additional conditions ($\omega X$ is the Wallman compactification). The results obtained are commented on by category theory.
@article{TIMB_2022_30_1_a0,
     author = {A. S. Biadrytski and V. L. Timokhovich},
     title = {A modification of the {Harris} ($WO$) condition and functor properties of the hyperspace and {Wallman} compactification},
     journal = {Trudy Instituta matematiki},
     pages = {4--11},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a0/}
}
TY  - JOUR
AU  - A. S. Biadrytski
AU  - V. L. Timokhovich
TI  - A modification of the Harris ($WO$) condition and functor properties of the hyperspace and Wallman compactification
JO  - Trudy Instituta matematiki
PY  - 2022
SP  - 4
EP  - 11
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a0/
LA  - ru
ID  - TIMB_2022_30_1_a0
ER  - 
%0 Journal Article
%A A. S. Biadrytski
%A V. L. Timokhovich
%T A modification of the Harris ($WO$) condition and functor properties of the hyperspace and Wallman compactification
%J Trudy Instituta matematiki
%D 2022
%P 4-11
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a0/
%G ru
%F TIMB_2022_30_1_a0
A. S. Biadrytski; V. L. Timokhovich. A modification of the Harris ($WO$) condition and functor properties of the hyperspace and Wallman compactification. Trudy Instituta matematiki, Tome 30 (2022) no. 1, pp. 4-11. http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a0/

[1] Ponomarev V. I., “O zamknutykh otobrazheniyakh”, Uspekhi matematicheskikh nauk, 14:4(88) (1959), 203–206 | MR | Zbl

[2] Loncar I., “Hyperspaces of the inverse limit space”, Glasnik Matematicki, 27:47 (1992), 71–84 | MR | Zbl

[3] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Fizmatlit, M., 2006, 336 pp.

[4] Harris D., “The Wallman compactification as a functor”, General Topology and its Applications, 1:3 (1971), 273–281 | DOI | MR | Zbl

[5] Hajek D., “A characterization of $T_3$-spaces”, Indiana University Mathematics Journal, 23:1 (1973), 23–25 | DOI | MR | Zbl

[6] Kukrak G. O., Timokhovich V. L., “Rasshirenie Volmena i eksponenta. Funktorialnye svoistva”, Trudy instituta matematiki NAN Belarusi, 30:1-2 (2022), 38–44

[7] Ponomarev V. I., “O prodolzhenii mnogoznachnykh otobrazhenii topologicheskikh prostranstv na ikh bikompaktnye rasshireniya”, Matematicheskii sbornik, 52(94):3 (1960), 847–862 | Zbl

[8] Engelking R., Obschaya topologiya, Mir, M., 1986, 752 pp. | MR

[9] Ponomarev V. I., “Novoe prostranstvo zamknutykh mnozhestv i mnogoznachnye nepreryvnye otobrazheniya bikompaktov”, Matematicheskii sbornik, 48(90):2 (1959), 191–212 | Zbl