Improving the quality of the control process in a linear terminal problem on optimal strategies with closures
Trudy Instituta matematiki, Tome 29 (2021) no. 1, pp. 74-84
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper deals with an optimal control problem for a linear discrete system subject to disturbances, which must be robustly steered in a finite time to the terminal set while ensuring the minimum of the guaranteed value of the terminal performance criterion. For the problem under consideration, an optimal control strategy was defined in [7] that takes into account information about the state of the system at one future time instant, and an effective method for its calculation was proposed. Continuing the study [7], in this paper we obtain estimates for the control process quality improvement when using the optimal strategy in comparison to the optimal guaranteeing open-loop input.
@article{TIMB_2021_29_1_a6,
author = {N. M. Dmitruk and D. A. Kastsiukevich},
title = {Improving the quality of the control process in a linear terminal problem on optimal strategies with closures},
journal = {Trudy Instituta matematiki},
pages = {74--84},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a6/}
}
TY - JOUR AU - N. M. Dmitruk AU - D. A. Kastsiukevich TI - Improving the quality of the control process in a linear terminal problem on optimal strategies with closures JO - Trudy Instituta matematiki PY - 2021 SP - 74 EP - 84 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a6/ LA - ru ID - TIMB_2021_29_1_a6 ER -
%0 Journal Article %A N. M. Dmitruk %A D. A. Kastsiukevich %T Improving the quality of the control process in a linear terminal problem on optimal strategies with closures %J Trudy Instituta matematiki %D 2021 %P 74-84 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a6/ %G ru %F TIMB_2021_29_1_a6
N. M. Dmitruk; D. A. Kastsiukevich. Improving the quality of the control process in a linear terminal problem on optimal strategies with closures. Trudy Instituta matematiki, Tome 29 (2021) no. 1, pp. 74-84. http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a6/