Improving the quality of the control process in a linear terminal problem on optimal strategies with closures
Trudy Instituta matematiki, Tome 29 (2021) no. 1, pp. 74-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with an optimal control problem for a linear discrete system subject to disturbances, which must be robustly steered in a finite time to the terminal set while ensuring the minimum of the guaranteed value of the terminal performance criterion. For the problem under consideration, an optimal control strategy was defined in [7] that takes into account information about the state of the system at one future time instant, and an effective method for its calculation was proposed. Continuing the study [7], in this paper we obtain estimates for the control process quality improvement when using the optimal strategy in comparison to the optimal guaranteeing open-loop input.
@article{TIMB_2021_29_1_a6,
     author = {N. M. Dmitruk and D. A. Kastsiukevich},
     title = {Improving the quality of the control process in a linear terminal problem on optimal strategies with closures},
     journal = {Trudy Instituta matematiki},
     pages = {74--84},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a6/}
}
TY  - JOUR
AU  - N. M. Dmitruk
AU  - D. A. Kastsiukevich
TI  - Improving the quality of the control process in a linear terminal problem on optimal strategies with closures
JO  - Trudy Instituta matematiki
PY  - 2021
SP  - 74
EP  - 84
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a6/
LA  - ru
ID  - TIMB_2021_29_1_a6
ER  - 
%0 Journal Article
%A N. M. Dmitruk
%A D. A. Kastsiukevich
%T Improving the quality of the control process in a linear terminal problem on optimal strategies with closures
%J Trudy Instituta matematiki
%D 2021
%P 74-84
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a6/
%G ru
%F TIMB_2021_29_1_a6
N. M. Dmitruk; D. A. Kastsiukevich. Improving the quality of the control process in a linear terminal problem on optimal strategies with closures. Trudy Instituta matematiki, Tome 29 (2021) no. 1, pp. 74-84. http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a6/

[1] Kastsiukevich D.A., Dmitruk N.M., “A method for constructing an optimal control strategy in a linear terminal problem”, Journal of the Belarusian State University. Mathematics and Informatics, 2021, no. 2, 38–50 | DOI | MR

[2] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1978

[3] Dreyfus S.E., “Some types of optimal control of stochastic systems”, J. SIAM. Ser. A. Control, 1964, no. 2, 120–134 | MR | Zbl

[4] Gabasov R., Kirillova F.M., Kostina E.A., “Zamykaemye obratnye svyazi po sostoyaniyu dlya optimizatsii neopredelennykh sistem upravleniya. I. Odnokratnoe zamykanie”, Avtomatika i telemekhanika, 1996, no. 7, 121–130 | Zbl

[5] Balashevich N.V., Gabasov R., Kirillova F.M., “Postroenie optimalnykh obratnykh svyazei po matematicheskim modelyam s neopredelennostyu”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 44:2 (2004), 265–286 | MR | Zbl

[6] Kostyukova O., Kostina E., “Robust optimal feedback for terminal linear-quadratic control problems under disturbances”, Mathematical programming, 107:1–2 (2006), 131–153 | DOI | MR | Zbl

[7] Dmitruk N.M., “Optimalnaya strategiya s odnim momentom zamykaniya v lineinoi zadache optimalnogo garantirovannogo upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 58:2 (2018), 664–681 | DOI | Zbl