Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2021_29_1_a4, author = {V. V. Gorokhovik}, title = {High-order tangent vectors to sets and high-order necessary minimality conditions for vector optimization problems}, journal = {Trudy Instituta matematiki}, pages = {52--66}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a4/} }
TY - JOUR AU - V. V. Gorokhovik TI - High-order tangent vectors to sets and high-order necessary minimality conditions for vector optimization problems JO - Trudy Instituta matematiki PY - 2021 SP - 52 EP - 66 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a4/ LA - ru ID - TIMB_2021_29_1_a4 ER -
%0 Journal Article %A V. V. Gorokhovik %T High-order tangent vectors to sets and high-order necessary minimality conditions for vector optimization problems %J Trudy Instituta matematiki %D 2021 %P 52-66 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a4/ %G ru %F TIMB_2021_29_1_a4
V. V. Gorokhovik. High-order tangent vectors to sets and high-order necessary minimality conditions for vector optimization problems. Trudy Instituta matematiki, Tome 29 (2021) no. 1, pp. 52-66. http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a4/
[1] Giorgi G., Jimenez B., Novo V., “An overview of second order tangent sets and their application to vector optimization”, Bol. Soc. Esp. Mat. Apl., 52 (2010), 73–96 | MR | Zbl
[2] Khan A.A., Tammer Chr., Zalinescu C., Set-valued optimization. An introduction and applications, Springer-Verlag, Berlin-Heidelberg, 2015, 765 pp. | MR
[3] Penot J.-P., “High order optimality conditions and high order tangent sets”, SIAM J. Optimization, 27:4 (2017), 2508–2527 | DOI | MR | Zbl
[4] Khanh P.Q., Tung N.M., “Higher-Order Karush–Kuhn–Tucker Conditions in Nonsmooth Optimization”, SIAM J. on Optimization, 28:1 (2018), 820–848 | DOI | MR | Zbl
[5] Tung N.M., “New Higher-Order Strong Karush-Kuhn-Tucker Conditions for Proper Solutions in Nonsmooth Optimization”, J. Optimiz. Theory and Appl., 185:2 (2020), 448–475 | DOI | MR | Zbl
[6] Gorokhovik V. V., Rachkovskii N. N., Usloviya pervogo i vtorogo poryadka lokalnoi sobstvennoi minimalnosti v zadachakh vektornoi optimizatsii, Preprint No 50(450), In-t matematiki AN BSSR, Minsk, 1990, 27 pp. | Zbl
[7] Gorokhovik V. V., Vypuklye i negladkie zadachi vektornoi optimizatsii, Nauka i tekhnika, Minsk, 1990, 239 pp. | MR
[8] Gorokhovik V.V., Simonov A.Yu., “Variatsionnye mnozhestva vysokogo poryadka k poverkhnostyam urovnya neregulyarnykh otobrazhenii”, Trudy I-ta matematiki NAN Belarusi, 7 (2001), 17–30
[9] Gorokhovik V. V., “K usloviyam lokalnogo minimuma vtorogo poryadka v gladkikh zadachakh optimizatsii s abstraktnymi ogranicheniyami”, Vestsi NAN Belarusi, Ser. fiz.-mat. navuk, 2005, no. 3, 5–12
[10] Gorokhovik V. V., “Asimptoticheski kasatelnyi konus vtorogo poryadka k mnozhestvam i usloviya lokalnogo minimuma v zadache optimizatsii s ogranicheniyami”, Vestn. Sankt-Peterburgskogo un-ta. Seriya “Informatika i teoriya upravleniya”, 2006, no. 1, 34–41
[11] Gorokhovik V.V., “Kasatelnye vektory vtorogo poryadka k mnozhestvam i usloviya minimalnosti dlya tochek podmnozhestv uporyadochennykh normirovannykh prostranstv”, Tr. In-ta matematiki NAN Belarusi, 14:2 (2006), 35–47 | Zbl
[12] Bakhtin V.I., Gorokhovik V.V., “Usloviya optimalnosti vtorogo poryadka v zadachakh vektornoi optimizatsii c geometricheskimi ogranicheniyami”, Doklady NAN Belarusi, 58:1 (2009), 33–38 | MR
[13] Bakhtin V.I., Gorokhovik V.V., “Usloviya optimalnosti pervogo i vtorogo poryadka v zadachakh vektornoi optimizatsii na metricheskikh prostranstvakh”, Trudy Instituta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 32–43
[14] Gorokhovik V.V., “Usloviya optimalnosti v zadachakh vektornoi optimizatsii s netelesnym konusom polozhitelnykh elementov”, Zhurn. vychisl. mat. i mat. fiziki, 52:7 (2012), 1192–1214 | Zbl
[15] Bakhtin V.I., Gorokhovik V.V., “First and second order optimality conditions for vector optimization problems on metric spaces”, Proc. of the Steklov Institute of Mathematics, 269, Suppl. 2 (2010), S28–S39 | DOI
[16] Gorokhovik V.V., Trofimovich M.A., “Usloviya optimalnosti pervogo i vtorogo poryadka v zadachakh vektornoi optimizatsii s netranzitivnym otnosheniem predpochteniya”, Trudy Instituta matematiki i mekhaniki UrO RAN, 20, no. 4, 2014, 81–96
[17] Gorokhovik V.V., Trafimovich M.A., “First and Second Order Optimality Conditions in Vector Optimization Problems with Nontransitive Preference Relation”, Proc. of the Steklov Institute of Mathematics, 292, Suppl. 1 (2016), S91–S105 | DOI | MR | Zbl
[18] Rockafellar R.T., Wets R.J.-B., Variational analysis, Springer-Verlag, Berlin, 1998, 733 pp. | MR | Zbl
[19] Penot J.-P., Calculus without Derivatives, Springer, New York, 2013, 544 pp. | MR | Zbl
[20] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhauser, Boston, 1990, 461 pp. | MR | Zbl
[21] Bonnans J.F., Shapiro A., Perturbation Analysis of Optimization Problems, Springer, Berlin, 2000, 601 pp. | MR | Zbl
[22] Ioffe A.D., Variational analysis of regular mappings, Springer International Publishing AG, 2017, 509 pp. | MR | Zbl
[23] Morukhovich B.S., Variational Analysis And Generalized Differentiation, v. 1, Basic Theory, Springer, Berlin, 2005, 1057 pp. | MR
[24] Bouligand G., “Sur l'existence des demi-tangentes a une courbe de Jordan”, Fundamenta Math., 15 (1930), 215–218 | DOI
[25] Bouligand G., Introduction a la Geometrie Infinitseminale Directe, Gauthier-Villars, Paris, 1932
[26] Dubovitskii A. Ya., Milyutin A. A., “Zadachi na ekstremum pri nalichii ogranichenii”, Zhurn. vychisl. mat. i mat. fiziki, 5:3 (1965), 395–453 | MR
[27] Demyanov V.F., Rubinov A.M., Priblizhennye metody resheniya ekstremalnykh zadach, Izd-vo Leningradskogo un-ta, L., 1968, 180 pp. | MR
[28] Demyanov V.F., Rubinov A.M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 432 pp.
[29] Kuratovskii K., Topologiya, v. 1, Mir, M., 1966, 594 pp. | MR
[30] Hoffmann K.H., Kornstaedt H.J., “Higher-order necessary conditions in abstract mathematical programming”, J. Optim. Theory Appl., 26:4 (1978), 533–568 | DOI | MR | Zbl
[31] Cambini A., Martein L., Vlach M., “Second order tangent sets and optimality conditions”, Math. Jponica, 49:3 (1999), 451–461 | MR | Zbl
[32] Penot J. P., “Second order conditions for optimization problems with constraints”, SIAM J. Control and Optimization, 37:1 (1998), 303–318 | DOI | MR
[33] Gorokhovik V.V., “High order minimality conditions for an abstract vector optimization problem”, French - German - Polish Conference on Optimization, Abstracts (September 9–13, 2002, Cottbus, Germany), 2002, 17