On the normal subgroups and the factorization of some$\pi$-solvable irreducible linear groups
Trudy Instituta matematiki, Tome 29 (2021) no. 1, pp. 149-164
Voir la notice de l'article provenant de la source Math-Net.Ru
For finite $\pi$-solvable absolutely irreducible linear group of degree $n=2|H|$ over a field of zero characteristic with a $\pi$-Hall $TI$-subgroup $H$ of a odd order that is not normal, the existence of certain normal subgroups and factorizations is proved.
@article{TIMB_2021_29_1_a13,
author = {A. A. Yadchenko},
title = {On the normal subgroups and the factorization of some$\pi$-solvable irreducible linear groups},
journal = {Trudy Instituta matematiki},
pages = {149--164},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a13/}
}
TY - JOUR AU - A. A. Yadchenko TI - On the normal subgroups and the factorization of some$\pi$-solvable irreducible linear groups JO - Trudy Instituta matematiki PY - 2021 SP - 149 EP - 164 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a13/ LA - ru ID - TIMB_2021_29_1_a13 ER -
A. A. Yadchenko. On the normal subgroups and the factorization of some$\pi$-solvable irreducible linear groups. Trudy Instituta matematiki, Tome 29 (2021) no. 1, pp. 149-164. http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a13/