Conditions for pointwise controllability and pointwise observability of linear time-invariant singularly perturbed systems with delay
Trudy Instituta matematiki, Tome 29 (2021) no. 1, pp. 138-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a linear time-invariant singularly perturbed system with finite lumped delay in state variables and with an observable linear output without delay, multipoint finite-dimensional boundary value problems are considered - the problems of pointwise controllability and pointwise observability. The duality of the considered singularly perturbed control and observation systems is established. By the method of defining equations, necessary, sufficient conditions for pointwise controllability and pointwise observability, which are valid for all sufficiently small values of the singularity parameter, are obtained independent of the parameter. The conditions are expressed in terms of the matrix parameters of the original system, have a rank type, and are formulated in terms of solutions of recurrent algebraic matrix defining equations, which are constructed according to the original systems by simple rules.
@article{TIMB_2021_29_1_a12,
     author = {O. B. Tsekhan},
     title = {Conditions for pointwise controllability and pointwise observability of linear time-invariant singularly perturbed systems with delay},
     journal = {Trudy Instituta matematiki},
     pages = {138--148},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a12/}
}
TY  - JOUR
AU  - O. B. Tsekhan
TI  - Conditions for pointwise controllability and pointwise observability of linear time-invariant singularly perturbed systems with delay
JO  - Trudy Instituta matematiki
PY  - 2021
SP  - 138
EP  - 148
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a12/
LA  - ru
ID  - TIMB_2021_29_1_a12
ER  - 
%0 Journal Article
%A O. B. Tsekhan
%T Conditions for pointwise controllability and pointwise observability of linear time-invariant singularly perturbed systems with delay
%J Trudy Instituta matematiki
%D 2021
%P 138-148
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a12/
%G ru
%F TIMB_2021_29_1_a12
O. B. Tsekhan. Conditions for pointwise controllability and pointwise observability of linear time-invariant singularly perturbed systems with delay. Trudy Instituta matematiki, Tome 29 (2021) no. 1, pp. 138-148. http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a12/

[1] Fridman, E., Introduction to Time-Delay Systems: Analysis and Control, Birkhauser, Basel, 2014, xviii+362 pp. | DOI | MR | Zbl

[2] Kirillova, F. M., Churakova, S. V., “Otnositelnaya upravlyaemost lineinykh dinamicheskikh sistem s zapazdyvaniem”, Dokl. AN SSSR, 174:6 (1967), 1260–1263 | Zbl

[3] Gabasov R., Kirillova F. M., Kachestvennaya teoriya optimalnykh protsessov, Nauka, M., 1971, 508 pp.

[4] Minyuk S. A., “Dve zadachi upravlyaemosti dlya lineinoi sistemy s posledeistviem”, Vestnik BGU. Seriya 1, 1972, no. 1, 8–11

[5] Marchenko, V. M., Moskovska, B. P., Simeonova Yu. S., “Potochechnaya upravlyaemost sistem s posledeistviem”, Differents. uravneniya, 14:7 (1978), 1324–1327 | MR | Zbl

[6] Marchenko, V. M., “Nekotorye voprosy kachestvennoi teorii upravleniya lineinymi statsionarnymi sistemami s posledeistviem”, Banach Center Publications, 14, 1985, 361–381 | DOI

[7] Tsekhan, O., “Complete Controllability Conditions for Linear Singularly Perturbed Time-Invariant Systems with Multiple Delays via Chang-Type Transformation”, Axioms, 71:8 (2019), 1–19 | DOI

[8] Marchenko, V. M., Luazo, Zh.-Zh., “Realizatsiya dinamicheskikh sistem v shkalakh sistem s posledeistviem. II. Upravlyaemost Nablyudamost Minimalnost”, Differentsialnye uravneniya, 43:1 (2007), 41–51 | MR | Zbl

[9] Naidu, D. S., “Singular perturbations and time scales in control theory and applications: An overview”, Dynam. Continuous, Discrete and Impulsive Syst. Ser. B: Appl. Algorithm, 9 (2002), 233–278 | MR | Zbl

[10] Dmitriev, M. G. Kurina, G. A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomatika i telemekhanika, 2006, no. 1, 3–51 | Zbl

[11] Naidu, D. S., “Singular perturbations and time scales in control theories and applications: an overview 2002 - 2012”, International journal of information and systems sciences, 9:1 (2014), 1–36 | MR

[12] Glizer, V. Y., Controllability of Singularly Perturbed Linear Time Delay Systems, Systems Control: Foundations Applications, Birkhauser, Basel, 2021, 419 pp. | DOI | MR | Zbl

[13] Kopeikina, T. B., Tsekhan, O. B., “Nablyudaemost lineinykh statsionarnykh singulyarno vozmuschennykh sistem v prostranstve sostoyanii”, Prikl. matematika i mekhanika, 57:6 (1993), 22–32 | MR | Zbl

[14] Donchev, A., Sistemy optimalnogo upravleniya: Vozmuscheniya, priblizheniya i analiz chuvstvitelnosti, Per. s angl., Mir, M., 1987, 156 pp.

[15] Kopeikina, T. B., “Ob upravlyaemosti lineinykh singulyarno vozmuschennykh sistem s zapazdyvaniem”, Differents. uravneniya, 25:9 (1989), 1508–1518 | MR | Zbl

[16] Kopeikina, T. B., “Otnositelnaya nablyudaemost lineinykh nestatsionarnykh singulyarno vozmuschennykh sistem s zapazdyvaniem”, Differents. uravneniya, 34:1 (1998), 24–30 | MR | Zbl

[17] Kopeikina, T. B., “Opredelyayuschie uravneniya v probleme upravlyaemosti statsionarnykh singulyarno vozmuschennykh sistem s zapazdyvaniem”, Trudy BGTU. Ser. VI, Fiz.-mat. nauki i inform., XVII (2009), 11–13

[18] Kopeikina, T.B., Tsekhan, O. B., “Ob upravlyaemosti lineinykh nestatsionarnykh singulyarno vozmuschennykh sistem v prostranstve sostoyanii”, Izvestiya AN. Tekh.kibernetika, 1993, no. 3, 40–46

[19] Kopeikina, T. B., Tsekhan, O. B., “K teorii nablyudaemosti lineinykh nestatsionarnykh singulyarno vozmuschennykh sistem”, Vestsi NAN Belarusi, Ser. fiz.-mat. nauk, 1999, no. 3, 22–27 | MR

[20] Kopeikina, T. B., “Unified method of investigating controllability and observability problems of time-variable differential systems”, Functional differential equations, 13:3-4 (2006), 463–481 | MR

[21] Kopeikina, T. B., “Ob upravlyaemosti lineinykh singulyarno vozmuschennykh sistem s zapazdyvaniem”, Differentsialnye uravneniya, 25:9 (1989), 1508–1518 | MR | Zbl

[22] Kopeikina, T. B., Tsekhan, O. B., Issledovanie nablyudaemosti lineinykh nestatsionarnykh singulyarno vozmuschennykh sistem s pomoschyu metoda prostranstva sostoyanii, Preprint No 16 (539), AN Belarusi. In-t matematiki, Minsk, 1997, 23 pp.

[23] Marchenko, V. M., “Ob algebraicheskom obosnovanii odnogo kriteriya upravlyaemosti”, Differents. uravneniya, 9:11 (1973), 2088–2091 | Zbl

[24] Gabasov, R., Zhevnyak, R. M. Kirillova, F. M. Kopeikina, T. B., “Otnositelnaya nablyudaemost lineinykh sistem. I. Obyknovennye sistemy”, Avtomat. i telemekh., 1972, no. 8, 5–15