Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2020_28_1_a2, author = {M. V. Ignatenko and L. A. Yanovich}, title = {Operator interpolation is one of universal methods of approximation theory}, journal = {Trudy Instituta matematiki}, pages = {17--31}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a2/} }
TY - JOUR AU - M. V. Ignatenko AU - L. A. Yanovich TI - Operator interpolation is one of universal methods of approximation theory JO - Trudy Instituta matematiki PY - 2020 SP - 17 EP - 31 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a2/ LA - ru ID - TIMB_2020_28_1_a2 ER -
M. V. Ignatenko; L. A. Yanovich. Operator interpolation is one of universal methods of approximation theory. Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 17-31. http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a2/
[1] Makarov V. L., Khlobystov V. V., Yanovich L. A., Interpolirovanie operatorov, Nauk. dumka, Kiev, 2000
[2] Makarov V. L., Khlobystov V. V., Yanovich L. A., “Methods of Operator Interpolation”, Proc. of the Institute of Mathematics of NAS of Ukraine. Kiev, 83 (2010), 1–517
[3] Yanovich L. A., Ignatenko M. V., “Formuly operatornogo interpolirovaniya v prostranstvakh nepreryvno differentsiruemykh funktsii”, Tr. In-ta matematiki Nats. akad. nauk Belarusi, 3 (1999), 89–98 | Zbl
[4] Ignatenko M. V., Yanovich L. A., “Newton type operator interpolation formulas based on interpolation by means of rational functions”, Comput. Methods Appl. Math., 2:2 (2002), 143–152 | DOI | MR | Zbl
[5] Yanovich L. A., Khudyakov A. P., “Formuly lineinoi operatornoi interpolyatsii s proizvolnym chislom uzlov isp roizvolnymi vkhodnymi funktsiyami”, Dokl. Nats. akad. nauk Belarusi, 56:4 (2012), 5–10 | MR | Zbl
[6] Ignatenko M. V., Yanovich L. A., “Primenenie preobrazovaniya Gankelya dlya postroeniya formul operatornogo interpolirovaniya”, Ves. Nats. akad. navuk Belarusi. Ser. fiz.-mat. navuk, 1997, no. 2, 5–10 | Zbl
[7] Yanovich L. A., Ignatenko M. V., “Construction of Formulae of Operator Interpolation by means of Abel Integral Transform”, Nonlinear Phenomena in Complex Systems, NPCS'97, Proc. of the sixth annual seminar (Minsk, Belarus, February 10–13, 1997), v. 9, B.I.Stepanov Inst. of Physics etc., eds. V.I. Kuvshinov et al., Inst. of Physics, Minsk, 1998, 21–27
[8] Ignatenko M. V., “Operatornye interpolyatsionnye formuly ermitova tipa s uzlami proizvolnoi kratnosti, osnovannye na tozhdestvennykh preobrazovaniyakh funktsii”, Ves. Nats. akad. navuk Belarusi. Ser. fiz.-mat. navuk, 54:3 (2018), 263–272 | MR
[9] Ignatenko M. V., Yanovich L. A., “Ob interpolirovanii differentsiruemykh operatorov, zadannykh na prostranstvakh vektor-funktsii”, Tr. In-ta matematiki Nats. akad. nauk Belarusi, 1 (1998), 125–132 | Zbl
[10] Yanovich L. A., Ignatenko M. V., “Spetsialnyi sluchai interpolyatsionnoi zadachi Ermita – Birkgofa dlya operatorov v prostranstve gladkikh funktsii”, Aktualnye problemy sovremennogo analiza, sb. nauch. tr. Mezhdunar. mat. konf. (Grodno, 7–10 apr. 2009 g.), Nats. akad. nauk Belarusi, In-t matematiki NAN Belarusi, Grodn. goc. un-t im. Ya. Kupaly i dr., eds. Yu.M. Vuvunikyan[i dr.], GrGU, Grodno, 2009, 198–215
[11] Yanovich L. A., Ignatenko M. V., “Interpolyatsionnye operatornye mnogochleny Ermita – Birkgofa v prostranstve gladkikh funktsii”, Dokl. Nats. akad. nauk Belarusi, 53:5 (2009), 15–21 | MR | Zbl
[12] Yanovich L. A., Ignatenko M. V., “Operator interpolation Hermite – Birkhoff formulas in spaces of smooth functions”, Zhurnal obchisl. ta prikl. matem., 2010, no. 1 (100), 117–129 | MR
[13] Yanovich L. A., Ignatenko M. V., “Obobschennaya interpolyatsionnaya zadacha Ermita – Birkgofa dlya operatorov”, Analiticheskie metody analiza i differentsialnykh uravnenii, AMADE-2009, trudy 5-i Mezhdunar. konf., v 2 t. (Minsk, 14–19 sentyabrya 2009 g.), v. 1, Belorus. gos. un-t, In-t matematiki NAN Belarusi, Mosk. gos. un-t im. M. V. Lomonosova, eds. A. A. Kilbas, S. V. Rogozin, In-t matematiki NAN Belarusi, Minsk, 2010, 140–147
[14] Ignatenko M. V., Yanovich L. A., “Obobschennye interpolyatsionnye formuly dlya operatorov, opredelennykh na dekartovom proizvedenii funktsionalnykh prostranstv”, Ves. Nats. akad. navuk Belarusi. Ser. fiz.-mat. navuk, 2011, no. 1, 5–11
[15] Yanovich L. A., Doroshko V. V., “Spetsialnye sluchai polinomialnogo operatornogo interpolirovaniya Ermita – Birkgofa”, Dokl. Nats. akad. nauk Belarusi, 45:4 (2001), 15–20 | MR | Zbl
[16] Yanovich L. A., Doroshko V. V., “Formuly operatornogo interpolirovaniya, porozhdennye obobschennymi interpolyatsionnymi mnogochlenami Abelya – Goncharova”, Dokl. Nats. akad. nauk Belarusi, 46:3 (2002), 38–41 | MR | Zbl
[17] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR
[18] Yanovich L. A., Hudyakov A. P., “On one class of interpolating formulas for functions of matrix variables”, J. Numer. Appl. Math., 2011, no. 2 (105), 136–147
[19] Yanovich L. A., Ignatenko M. V., “On interpolation methods operator approximation”, Analytic Methods of Analysis and Differential Equations, AMADE-2012, Proc. of the 7th Intern. Workshop (Minsk, Belarus, September 10–14, 2012), Belarusian State University, Institute of Mathematics of the Belarusian National Academy of Sciences, eds. S.V. Rogozin, M.V. Dubatovskaya, Cambridge Scientific Publishers, UK, Cottenham, 203–221 | Zbl
[20] Yanovich L. A., Ignatenko M. V., “O nekotorykh analogakh formul splain-interpolirovaniya dlya funktsii matrichnoi peremennoi”, Dokl. Nats. akad. nauk Belarusi, 59:4 (2015), 17–24 | MR | Zbl
[21] Yanovich L. A., Romanovski J. V., “On matrix function interpolation”, J. Numer. Appl. Math., 2009, no. 1 (97), 122–131
[22] Yanovich L. A., Ignatenko M. V., “Interpolation formulas for functions, defined on the sets of matrices with different multiplication rules”, Zhurnal obchisl. ta prikl. matem., 2016, no. 2 (122), 140–158
[23] Yanovich L. A., Romanovskii Yu. V., “Interpolyatsionnye formuly dlya funktsii mnogikh matrichnykh peremennykh”, Zb. prats in-tu matematiki Nats. akad. nauk Ukraïni, 7:1 (2010), 365–379 | Zbl
[24] Yanovich L. A., Ignatenko M. V., Osnovy teorii interpolirovaniya funktsii matrichnykh peremennykh, Belaruskaya navuka, Minsk, 2016
[25] Yanovich L. A., “Priblizhenie funktsii ot stokhasticheskikh matrits interpolyatsionnymi mnogochlenami”, Tr. In-ta matematiki Nats. akad. nauk Belarusi, 15:2 (2007), 121–129
[26] Yanovich L. A., Tarasevich A. V., “Skhodimost interpolirovaniya po skalyarnym matrichnym uzlam v klasse analiticheskikh funktsii”, Tr. In-ta matematiki Nats. akad. nauk Belarusi, 14:2 (2006), 106–115
[27] Yanovich L. A., Ignatenko M. V., Interpolyatsionnye metody approksimatsii operatorov, zadannykh na funktsionalnykh prostranstvakh i mnozhestvakh matrits, Belaruskaya navuka, Minsk, 2020
[28] Yanovich L. A., Ignatenko M. V., “K teorii interpolirovaniya Ermita – Birkgofa nelineinykh obyknovennykh differentsialnykh operatorov”, Ves. Nats. akad. navuk Belarusi. Ser. fiz.-mat. navuk, 2017, no. 2, 7–23
[29] Ignatenko M. V., “K teorii interpolirovaniya differentsialnykh operatorov proizvolnogo poryadka v chastnykh proizvodnykh”, Tr. In-ta matematiki Nats. akad. nauk Belarusi, 25:2 (2017), 11–20 | Zbl
[30] Ignatenko M. V., Yanovich L. A., “Obobschennye interpolyatsionnye mnogochleny Ermita – Birkgofa dlya differentsialnykh operatorov proizvolnogo poryadka v chastnykh proizvodnykh”, Ves. Nats. akad. navuk Belarusi. Ser. fiz.-mat. navuk, 54:2 (2018), 149–163 | MR
[31] Ignatenko M. V., Yanovich L. A., “O tochnom i priblizhennom reshenii otdelnykh differentsialnykh uravnenii s variatsionnymi proizvodnymi pervogo i vtorogo poryadkov”, Ves. Nats. akad. navuk Belarusi. Ser. fiz.-mat. navuk, 56:1 (2020), 51–71 | MR