Approximation of real numbers by
Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of approximating real numbers by algebraic numbers of a given degree and height is a natural development of the classical Dirichlet's theorem from the mid-19th century, which described approximation of real numbers by rational fractions. Approximation by algebraic numbers was first studied in 1961 by a German mathematician E. Wirsing. This article describes contributions of Belarusian mathematicians V. Sprindzuk, V. Bernik, K. Tishchenko, V. Beresnevich, D. Koleda, A. Gusakova, and D. Bodyagin to the research related to Wirsing's conjecture, as well as studies of the distribution of algebraic numbers, their discriminants and resultants. In addition, a conjecture of V. Beresnevich, V. Bernik and F. Goetze has been proved.
@article{TIMB_2020_28_1_a0,
     author = {V. I. Bernik and E. V. Guseva and N. V. Sakovich},
     title = {Approximation of real numbers by},
     journal = {Trudy Instituta matematiki},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a0/}
}
TY  - JOUR
AU  - V. I. Bernik
AU  - E. V. Guseva
AU  - N. V. Sakovich
TI  - Approximation of real numbers by
JO  - Trudy Instituta matematiki
PY  - 2020
SP  - 3
EP  - 10
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a0/
LA  - ru
ID  - TIMB_2020_28_1_a0
ER  - 
%0 Journal Article
%A V. I. Bernik
%A E. V. Guseva
%A N. V. Sakovich
%T Approximation of real numbers by
%J Trudy Instituta matematiki
%D 2020
%P 3-10
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a0/
%G ru
%F TIMB_2020_28_1_a0
V. I. Bernik; E. V. Guseva; N. V. Sakovich. Approximation of real numbers by. Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a0/