On the factorization of some $\pi$-solvable irreducible linear groups
Trudy Instituta matematiki, Tome 27 (2019) no. 1, pp. 79-107
Voir la notice de l'article provenant de la source Math-Net.Ru
For finite $\pi$-solvable absolutely irreducible linear group of degree $n2|H|$ over a field of zero characteristic with a $\pi$-Hall $TI$-subgroup $H$ of a odd order that is not normal, the existence of certain factorizations is proved.
@article{TIMB_2019_27_1_a8,
author = {A. A. Yadchenko},
title = {On the factorization of some $\pi$-solvable irreducible linear groups},
journal = {Trudy Instituta matematiki},
pages = {79--107},
publisher = {mathdoc},
volume = {27},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a8/}
}
A. A. Yadchenko. On the factorization of some $\pi$-solvable irreducible linear groups. Trudy Instituta matematiki, Tome 27 (2019) no. 1, pp. 79-107. http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a8/