Inversion with respect to an elliptic cycle of a hyperbolicplane of positive curvature
Trudy Instituta matematiki, Tome 27 (2019) no. 1, pp. 60-78

Voir la notice de l'article provenant de la source Math-Net.Ru

In the projective Cayley – Klein model, inversion with respect to an elliptic cycle of a hyperbolic plane $\widehat{H}$ of positive curvature is investigated. The analitical expression of the inversion in the canonical frame of the first type is obtained. Images of lines and cycles which concentric with the inversion base, are defined. The horizons of elliptic and hyperbolic cycles of the plane $\widehat{H}$ are investigated.
Keywords: hyperbolic plane of positive curvature, inversion with respect to an elliptic cycle, horizon of a cycle.
@article{TIMB_2019_27_1_a7,
     author = {L. N. Romakina},
     title = {Inversion with respect to an elliptic cycle of a hyperbolicplane of positive curvature},
     journal = {Trudy Instituta matematiki},
     pages = {60--78},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a7/}
}
TY  - JOUR
AU  - L. N. Romakina
TI  - Inversion with respect to an elliptic cycle of a hyperbolicplane of positive curvature
JO  - Trudy Instituta matematiki
PY  - 2019
SP  - 60
EP  - 78
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a7/
LA  - ru
ID  - TIMB_2019_27_1_a7
ER  - 
%0 Journal Article
%A L. N. Romakina
%T Inversion with respect to an elliptic cycle of a hyperbolicplane of positive curvature
%J Trudy Instituta matematiki
%D 2019
%P 60-78
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a7/
%G ru
%F TIMB_2019_27_1_a7
L. N. Romakina. Inversion with respect to an elliptic cycle of a hyperbolicplane of positive curvature. Trudy Instituta matematiki, Tome 27 (2019) no. 1, pp. 60-78. http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a7/