Inversion with respect to an elliptic cycle of a hyperbolicplane of positive curvature
Trudy Instituta matematiki, Tome 27 (2019) no. 1, pp. 60-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the projective Cayley – Klein model, inversion with respect to an elliptic cycle of a hyperbolic plane $\widehat{H}$ of positive curvature is investigated. The analitical expression of the inversion in the canonical frame of the first type is obtained. Images of lines and cycles which concentric with the inversion base, are defined. The horizons of elliptic and hyperbolic cycles of the plane $\widehat{H}$ are investigated.
Keywords: hyperbolic plane of positive curvature, inversion with respect to an elliptic cycle, horizon of a cycle.
@article{TIMB_2019_27_1_a7,
     author = {L. N. Romakina},
     title = {Inversion with respect to an elliptic cycle of a hyperbolicplane of positive curvature},
     journal = {Trudy Instituta matematiki},
     pages = {60--78},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a7/}
}
TY  - JOUR
AU  - L. N. Romakina
TI  - Inversion with respect to an elliptic cycle of a hyperbolicplane of positive curvature
JO  - Trudy Instituta matematiki
PY  - 2019
SP  - 60
EP  - 78
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a7/
LA  - ru
ID  - TIMB_2019_27_1_a7
ER  - 
%0 Journal Article
%A L. N. Romakina
%T Inversion with respect to an elliptic cycle of a hyperbolicplane of positive curvature
%J Trudy Instituta matematiki
%D 2019
%P 60-78
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a7/
%G ru
%F TIMB_2019_27_1_a7
L. N. Romakina. Inversion with respect to an elliptic cycle of a hyperbolicplane of positive curvature. Trudy Instituta matematiki, Tome 27 (2019) no. 1, pp. 60-78. http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a7/

[1] Rozenfeld B. A., Neevklidovy prostranstva, Nauka, M., 1969, 548 pp.

[2] Romakina L. N., Geometriya giperbolicheskoi ploskosti polozhitelnoi krivizny, v 4 ch., v. 1, Trigonometriya, Izd-vo Sarat. un-ta, Saratov, 2013, 244 pp.

[3] Romakina L. N., Geometriya giperbolicheskoi ploskosti polozhitelnoi krivizny, v 4 ch., v. 2, Preobrazovaniya i prostye razbieniya, Izd-vo Sarat. un-ta, Saratov, 2013, 274 pp.

[4] Rozenfeld B. A., Zamakhovskii M. P., Geometriya grupp Li. Simmetricheskie, parabolicheskie i periodicheskie prostranstva, MTsNMO, M., 2013, 260 pp.

[5] Romakina L. N., “Analogi formuly Lobachevskogo dlya ugla parallelnosti na giperbolicheskoi ploskosti polozhitelnoi krivizny”, Sib. elektron. matem. izv., 10 (2013), 393–407

[6] Romakina L. N., “Ovalnye linii giperbolicheskoi ploskosti polozhitelnoi krivizny”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 12:3 (2012), 37–44

[7] Romakina Lyudmila N., “Simple partitions of a hyperbolic plane of positive curvature”, Sbornik : Mathematics, 203:9 (2012), 1310 | DOI | DOI

[8] Romakina L. N., “Tsikly giperbolicheskoi ploskosti polozhitelnoi krivizny”, Zap. nauch. sem. POMI, 415, 2013, 137–162

[9] Efimov N. V., Vysshaya geometriya, Nauka, M., 1966, 576 pp.

[10] Bakelman I. Ya., Inversiya. Populyarnye lektsii po matematike, Nauka, M., 1978, 80 pp.

[11] Kokseter G. S. M., Greittser S. L., Novye vstrechi s geometriei, Nauka, M., 1971, 224 pp.

[12] Markushevich A. I., Elementy teorii analiticheskikh funktsii, Uchpedgiz, M., 1941, 544 pp.

[13] Pogorelov A. V., Geometriya, Nauka, M., 1983, 320 pp.

[14] Romakina Lyudmila N., “Inversion with respect to a hypercycle of a hyperbolic plane of positive curvature”, J. Geom, 107:1 (2016), 137–149 | DOI

[15] Romakina L. N., “Inversiya otnositelno oritsikla giperbolicheskoi ploskosti polozhitelnoi krivizny”, Trudy Instituta matematiki, 25:1 (2017), 82–92

[16] Romakina L. N., “Inversiya otnositelno absolyuta rasshirennoi giperbolicheskoi ploskosti”, N. I. Lobachevskii i matematicheskoe obrazovanie v Rossii, Mat. Mezhd. foruma po matem. obrazovaniyu, posvyaschennogo 225-letiyu N. I. Lobachevskogo (Kazan, 18–22 oktyabrya 2017 g.), v. 1, Izd-vo Kazan. un-ta, Kazan, 2017, 111–114

[17] Klein F., Neevklidova geometriya, ONTI NKTP SSSR, M.–L., 1936, 356 pp.

[18] Romakina L.N., “The chord length of a hypercycle in a hyperbolic plane of positive curvature”, Sib. Math. J., 54 (2013), 894 | DOI

[19] Romakina L. N., “Metod vizualizatsii figur «vblizi beskonechnosti»”, Matem. metody i informatsionnye tekhnologii upravleniya v nauke, obrazovanii i pravookhranitelnoi sfere, sb. mater. Vseros. nauchno-tekhn. konf. (Moskva — Ryazan, 27–28 aprelya 2017 g.), Akademiya prava i upravleniya Federalnoi sluzhby ispolneniya nakazanii, Ryazan, 2017, 321–23

[20] Romakina L. N., “Svetlana ribbons with intersecting axes in a hyperbolic plane of positive curvature”, J. for Geometry and Graphics, 209:2 (2016), 224

[21] Horváth Á. G., “Malfatti's problem on the hyperbolic plane”, Studia Sci. Math., 51 (2014), 201–212