On $\omega$-Schunck classes and generalized projectors of finite groups
Trudy Instituta matematiki, Tome 27 (2019) no. 1, pp. 13-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\omega$ be a non-empty set of primes. The operations $\mathrm{Q}_{\omega}$, $\mathrm{P}_{\omega}$ and $\mathrm{E}_{\Phi\omega}$ on classes of finite groups are introduced and studied. The $\omega$-Schunck class is defined and its applications to finding generalized projectors of groups and studying their properties are obtained.
@article{TIMB_2019_27_1_a1,
     author = {T. I. Vasilyeva},
     title = {On $\omega${-Schunck} classes and generalized projectors of finite groups},
     journal = {Trudy Instituta matematiki},
     pages = {13--22},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a1/}
}
TY  - JOUR
AU  - T. I. Vasilyeva
TI  - On $\omega$-Schunck classes and generalized projectors of finite groups
JO  - Trudy Instituta matematiki
PY  - 2019
SP  - 13
EP  - 22
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a1/
LA  - ru
ID  - TIMB_2019_27_1_a1
ER  - 
%0 Journal Article
%A T. I. Vasilyeva
%T On $\omega$-Schunck classes and generalized projectors of finite groups
%J Trudy Instituta matematiki
%D 2019
%P 13-22
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a1/
%G ru
%F TIMB_2019_27_1_a1
T. I. Vasilyeva. On $\omega$-Schunck classes and generalized projectors of finite groups. Trudy Instituta matematiki, Tome 27 (2019) no. 1, pp. 13-22. http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a1/

[1] Erickson R., “Projectors of finite groups”, Commun. Algebra, 10:18 (1982), 1919–1938

[2] Doerk K., Hawkes T., Finite soluble groups, Walter de Gruyter, Berlin-New-York, 1992

[3] Förster P., “Subnormal subgroups and formation projectors”, J. Austral. Math. Soc. Series A, 42 (1987), 31–47

[4] Vedernikov V.A., Sorokina M.M., “$\mathfrak{F}$-proektory i $\mathfrak{F}$-pokryvayuschie podgruppy konechnykh grupp”, Sib. mat. zhurn., 57:6 (2016), 1224–1239

[5] Monakhov V.S., Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006

[6] Skiba A.N., Shemetkov L.A., “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Matem. trudy, 2:2 (1999), 114–147

[7] Gaschütz W., Lectures on subgroups of Sylow type in finite soluble groups, Australian National University, Canberra, 1979

[8] Vasileva T.I., Prokopenko A.I., “Proektory i reshetki normalnykh podgrupp konechnykh grupp”, Dokl. NAN Belarusi, 48:4 (2004), 34–37