Some topological properties of the functor $C(X,Y)$
Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 71-78
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mathcal{K}$ is a category which objects are some pairs of topological spaces $(X,Y).$ To every pair $(X,Y)$ we associate a space $C_\tau(X,Y)$ of continuous maps endowed with some topology $\tau,$ and to every morphism $\mathcal{K}$ corresponding connecting maps between $C\tau(X,Y)$ spaces. In this paper we study the possibility of the defined map from $\mathcal{K}$ to category $Top$ of topological spaces and continuous maps to be a functor and its continuity.
@article{TIMB_2018_26_1_a9,
author = {H. O. Kukrak and V. L. Timokhovich and D. S. Frolova},
title = {Some topological properties of the functor $C(X,Y)$},
journal = {Trudy Instituta matematiki},
pages = {71--78},
year = {2018},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a9/}
}
H. O. Kukrak; V. L. Timokhovich; D. S. Frolova. Some topological properties of the functor $C(X,Y)$. Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 71-78. http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a9/
[1] Engelking R., Obschaya topologiya, Nauka, M., 1986
[2] Naimpally S., Trans. Amer. Math. Soc., 123 (1966), 267 | DOI | MR | Zbl
[3] Timokhovich V. L., Frolova D. S., Vestn. BGU. Ser. 1, 2009, no. 3, 84 | MR | Zbl
[4] Kukrak G. O., Timokhovich V. L., Vestn. BGU. Ser. 1, 2010, no. 1, 144 | MR | Zbl
[5] Timokhovich V. L., Frolova D. S., Izv. vuzov. Matem., 2013, no. 9, 45 | MR | Zbl
[6] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, M., 2006
[7] Aleksandrov P. S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977