The method of the characteristic parallelogram of the solution of the second mixed problem for the one-dimensional wave equation
Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 43-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors of the article wrote the solution of the second mixed problem for the one-dimensional wave equation in the form of a formula convenient for numerical realization using the characteristic parallelogram. The derivation of this formula is based on the representation of the classical solution of the problem.
@article{TIMB_2018_26_1_a7,
     author = {V. I. Korzyuk and S. N. Naumavets and V. P. Serikov},
     title = {The method of the characteristic parallelogram of the solution of the second mixed problem for the one-dimensional wave equation},
     journal = {Trudy Instituta matematiki},
     pages = {43--53},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a7/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - S. N. Naumavets
AU  - V. P. Serikov
TI  - The method of the characteristic parallelogram of the solution of the second mixed problem for the one-dimensional wave equation
JO  - Trudy Instituta matematiki
PY  - 2018
SP  - 43
EP  - 53
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a7/
LA  - ru
ID  - TIMB_2018_26_1_a7
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A S. N. Naumavets
%A V. P. Serikov
%T The method of the characteristic parallelogram of the solution of the second mixed problem for the one-dimensional wave equation
%J Trudy Instituta matematiki
%D 2018
%P 43-53
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a7/
%G ru
%F TIMB_2018_26_1_a7
V. I. Korzyuk; S. N. Naumavets; V. P. Serikov. The method of the characteristic parallelogram of the solution of the second mixed problem for the one-dimensional wave equation. Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 43-53. http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a7/

[1] Korzyuk V. I., “Metod kharakteristicheskogo parallelogramma na primere pervoi smeshannoi zadachi dlya odnomernogo volnovogo uravneniya”, Doklady NAN Belarusi, 61:1 (2017), 7–13 | MR | Zbl

[2] Korzyuk V. I., Kozlovskaya I. S., Klassicheskie resheniya dlya giperbolicheskikh uravnenii, v desyati chastyakh, v. 2, Minsk, 2017, 52 pp.

[3] Korzyuk V. I., Naumovets S. N., Kozlovskaya I. S., “Klassicheskie resheniya zadach dlya giperbolicheskikh uravnenii”, Studia i materialy EUIE w Warszawie, 2017, no. 2(10), 55–78

[4] Korzyuk V. I., Kozlovskaya I. S., “Ob usloviyakh soglasovaniya v granichnykh zadachakh dlya giperbolicheskikh uravnenii”, Doklady NAN Belarusi, 57:5 (2013), 37–42 | MR | Zbl

[5] Korzyuk V. I., Naumovets S. N., Sevastyuk V. A., “O klassicheskom reshenii vtoroi smeshannoi zadachi dlya odnomernogo volnovogo uravneniya”, Trudy instituta matematiki, 26:1 (2018), 37–44