On the classical solution of the second mixed problem for a one-dimensional wave equation
Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 35-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

Study the classical solution of the second mixed problem for a one-dimensional wave equation in the case of inhomogeneous matching conditions. Consider the formulation of a problem with conjugation conditions that is convenient for numerical realization.
@article{TIMB_2018_26_1_a6,
     author = {V. I. Korzyuk and S. N. Naumavets and V. A. Sevastyuk},
     title = {On the classical solution of the second mixed problem for a one-dimensional wave equation},
     journal = {Trudy Instituta matematiki},
     pages = {35--42},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a6/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - S. N. Naumavets
AU  - V. A. Sevastyuk
TI  - On the classical solution of the second mixed problem for a one-dimensional wave equation
JO  - Trudy Instituta matematiki
PY  - 2018
SP  - 35
EP  - 42
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a6/
LA  - ru
ID  - TIMB_2018_26_1_a6
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A S. N. Naumavets
%A V. A. Sevastyuk
%T On the classical solution of the second mixed problem for a one-dimensional wave equation
%J Trudy Instituta matematiki
%D 2018
%P 35-42
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a6/
%G ru
%F TIMB_2018_26_1_a6
V. I. Korzyuk; S. N. Naumavets; V. A. Sevastyuk. On the classical solution of the second mixed problem for a one-dimensional wave equation. Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 35-42. http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a6/

[1] Korzyuk V. I., Kozlovskaya I. S., Klassicheskie resheniya dlya giperbolicheskikh uravnenii, v desyati chastyakh, v. 2, Minsk, 2017, 52 pp.

[2] Korzyuk V. I., Naumovets S. N., Kozlovskaya I. S., “Klassicheskie resheniya zadach dlya giperbolicheskikh uravnenii”, Studia i materialy EUIE w Warszawie, 2017, no. 2(10), 55–78

[3] Korzyuk V. I., Kozlovskaya I. S., “Ob usloviyakh soglasovaniya v granichnykh zadachakh dlya giperbolicheskikh uravnenii”, Doklady NAN Belarusi, 57:5 (2013), 37–42 | MR | Zbl