Complex algebraic numbers in the sets of $\mathbb{C}^2$ of small Lebesgue measure
Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 25-30
Voir la notice de l'article provenant de la source Math-Net.Ru
Algebraic numbers of degree $n$ are investigated. For any $Q \ge {Q_0}\left( n \right)$ we show lower bound for distribution of complex algebraic numbers of height less then $Q$ near a smooth curve $f(z)$. We prove that for a set of points satisfying the condition $|f(\alpha _{1})- \alpha _{2}|$ their quantity is bounded below by $c_{15}Q^{n+1- \gamma }$.
@article{TIMB_2018_26_1_a4,
author = {V. I. Bernik and M. A. Zhur},
title = {Complex algebraic numbers in the sets of $\mathbb{C}^2$ of small {Lebesgue} measure},
journal = {Trudy Instituta matematiki},
pages = {25--30},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a4/}
}
TY - JOUR
AU - V. I. Bernik
AU - M. A. Zhur
TI - Complex algebraic numbers in the sets of $\mathbb{C}^2$ of small Lebesgue measure
JO - Trudy Instituta matematiki
PY - 2018
SP - 25
EP - 30
VL - 26
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a4/
LA - ru
ID - TIMB_2018_26_1_a4
ER -
V. I. Bernik; M. A. Zhur. Complex algebraic numbers in the sets of $\mathbb{C}^2$ of small Lebesgue measure. Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 25-30. http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a4/