Complex algebraic numbers in the sets of $\mathbb{C}^2$ of small Lebesgue measure
Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 25-30

Voir la notice de l'article provenant de la source Math-Net.Ru

Algebraic numbers of degree $n$ are investigated. For any $Q \ge {Q_0}\left( n \right)$ we show lower bound for distribution of complex algebraic numbers of height less then $Q$ near a smooth curve $f(z)$. We prove that for a set of points satisfying the condition $|f(\alpha _{1})- \alpha _{2}|$ their quantity is bounded below by $c_{15}Q^{n+1- \gamma }$.
@article{TIMB_2018_26_1_a4,
     author = {V. I. Bernik and M. A. Zhur},
     title = {Complex algebraic numbers in the sets of $\mathbb{C}^2$ of small {Lebesgue} measure},
     journal = {Trudy Instituta matematiki},
     pages = {25--30},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a4/}
}
TY  - JOUR
AU  - V. I. Bernik
AU  - M. A. Zhur
TI  - Complex algebraic numbers in the sets of $\mathbb{C}^2$ of small Lebesgue measure
JO  - Trudy Instituta matematiki
PY  - 2018
SP  - 25
EP  - 30
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a4/
LA  - ru
ID  - TIMB_2018_26_1_a4
ER  - 
%0 Journal Article
%A V. I. Bernik
%A M. A. Zhur
%T Complex algebraic numbers in the sets of $\mathbb{C}^2$ of small Lebesgue measure
%J Trudy Instituta matematiki
%D 2018
%P 25-30
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a4/
%G ru
%F TIMB_2018_26_1_a4
V. I. Bernik; M. A. Zhur. Complex algebraic numbers in the sets of $\mathbb{C}^2$ of small Lebesgue measure. Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 25-30. http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a4/