Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2018_26_1_a4, author = {V. I. Bernik and M. A. Zhur}, title = {Complex algebraic numbers in the sets of $\mathbb{C}^2$ of small {Lebesgue} measure}, journal = {Trudy Instituta matematiki}, pages = {25--30}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a4/} }
TY - JOUR AU - V. I. Bernik AU - M. A. Zhur TI - Complex algebraic numbers in the sets of $\mathbb{C}^2$ of small Lebesgue measure JO - Trudy Instituta matematiki PY - 2018 SP - 25 EP - 30 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a4/ LA - ru ID - TIMB_2018_26_1_a4 ER -
V. I. Bernik; M. A. Zhur. Complex algebraic numbers in the sets of $\mathbb{C}^2$ of small Lebesgue measure. Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 25-30. http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a4/
[1] Gelfond A. O., Transtsendentnye i algebraicheskie chisla, GITTL, M., 1952 | MR
[2] Kassels Dzh.V.S., Vvedenie v teoriyu diofantovykh priblizhenii, IL, M., 1961, 10 pp.
[3] Schneider Th., Einfuehrung in die Transzendenten Zahlen, Springer-Verlag, 1957, 139 pp. | MR
[4] Mahler K., “Ueber das Mass der Menge aller S-Zahlen”, Math. Ann., 1932, 106 | MR | Zbl
[5] Sprindzhuk V. G., Problema Malera v metricheskoi torii chisel, Nauka i tekhnika, Minsk, 1967 | MR
[6] Sprindzhuk V. G., “Dokazatelstvo gipotezy Malera o mere mnozhestva S-chisel”, Izv. AN SSSR. Ser. matem., 29:2 (1965) | MR | Zbl
[7] Bernik V. I., “Metricheskaya teorema o sovmestnom priblizhenii nulya znacheniyami tselochislennykh mnogochlenov”, Izv. AN SSSR. Ser. matem., 44:1 (1980) | Zbl
[8] Bernik V. I., “Application of Hausdorff Dimension in the theory of Diophantine Approximation”, Acta Arithmetica, 42:3 (1983), 219–253 | DOI | MR | Zbl
[9] Beresnevich V., “On approximation of real numbers by real algebraic numbers”, Acta Arithmetica, 90 (1999), 97–112 | DOI | MR | Zbl
[10] Bernik V. I., Gettse F., “Raspredelenie deistvitelnykh algebraicheskikh chisel proizvolnoi stepeni v korotkikh intervalakh”, Izv. RAN. Ser. matem., 79:1 (2015), 21–42 | DOI | MR | Zbl
[11] Beresnevich V., Dickinson D., Velani S., “Diophantine approximation on planar curves and the distribution of rational points (with an appendix sums of two squares near perfect squares by r. c. vaughan.)”, Ann. Of Math., 166:2 (2007), 367–426 | DOI | MR | Zbl
[12] Bernik V., Gotze F., Kukso O., “On algebraic points in the plane near smooth curves”, Lith. Math. J., 54:3 (2014), 231–251 | DOI | MR | Zbl
[13] Lamchanovskaya M. V., Kalosha N. I., “O raspredelenii kompleksnykh algebraicheskikh chisel v krugakh malogo radiusa na kompleksnoi ploskosti”, Tr. In-ta matem., 23:1 (2015), 85 | MR
[14] Bernik V., Gotze F., Gusakova A., “On points with algebraically conjugate coordinates close to smooth curves”, Moskow Journal of Combinatirics and Number Theory, 2:3 (2016), 56–101 | MR | Zbl