On composition factors of a finite group with $OS$-seminormal Sylow subgroup
Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 88-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite non-nilpotent group whose all proper subgroups nilpotent, is called the Schmidt group. A subgroup $A$ of a group $G$ is called $OS$-seminormal, if there exists a subgroup $B$ such that $G=AB$ and $A$ commutes with all Schmidt subgroups of $B$. For a prime number $r\ge 7$ is established $r$-solvability of the group, in which the Sylow $r$-subgroup $OS$-seminormal. For $r7$, all non-Abelian compositional factors are listed such group. The solvability of the group with $OS$-seminormal Sylow $2$- and $3$-subgroups.
@article{TIMB_2018_26_1_a11,
     author = {V. S. Monakhov and E. V. Zubei},
     title = {On composition factors of a finite group with $OS$-seminormal {Sylow} subgroup},
     journal = {Trudy Instituta matematiki},
     pages = {88--94},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a11/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - E. V. Zubei
TI  - On composition factors of a finite group with $OS$-seminormal Sylow subgroup
JO  - Trudy Instituta matematiki
PY  - 2018
SP  - 88
EP  - 94
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a11/
LA  - ru
ID  - TIMB_2018_26_1_a11
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A E. V. Zubei
%T On composition factors of a finite group with $OS$-seminormal Sylow subgroup
%J Trudy Instituta matematiki
%D 2018
%P 88-94
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a11/
%G ru
%F TIMB_2018_26_1_a11
V. S. Monakhov; E. V. Zubei. On composition factors of a finite group with $OS$-seminormal Sylow subgroup. Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 88-94. http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a11/

[1] Shmidt O. Yu., “Gruppy, vse podgruppy kotorykh spetsialnye”, Matem. sb., 31 (1924), 366–372

[2] Monakhov V. S., “Podgruppy Shmidta, ikh suschestvovanie i nekotorye prilozheniya”, Trudy Ukr. matem. kongressa 2001, Sektsiya No 1, Institut matematiki NAN Ukrainy, Kiev, 2002, 81–90 | Zbl

[3] Berkovich Ya. G., Palchik E. M., “O perestanovochnosti podgrupp konechnoi gruppy”, Sib. mat. zhurn., 8:4 (1967), 741–753

[4] Knyagina V. N., Monakhov V. S., “O perestanovochnosti silovskikh podgrupp s podgruppami Shmidta”, Tr. IMM UrO RAN, 16, no. 3, 2010, 130–139

[5] Su X., “On seminormal subgroups of finite group”, J. Math. (Wuhan), 8:1 (1988), 7–9 | MR

[6] Carocca A., Matos H., “Some solvability criteria for finite groups”, Hokkaido Math. J., 26:1 (1997), 157–161 | DOI | MR | Zbl

[7] Podgornaya V. V., “Polunormalnye podgruppy i sverkhrazreshimost konechnykh grupp”, Vestsi NAN Belarusi. Ser. fiz. matem. navuk, 2000, no. 4, 22–25 | MR

[8] Monakhov V. S., “Konechnye gruppy s polunormalnoi khollovoi podgruppoi”, Matem. zam., 80:4 (2006), 573–581 | DOI | Zbl

[9] Knyagina V. N., Monakhov V. S., “Konechnye gruppy s polunormalnymi podgruppami Shmidta”, Algebra i logika, 46:4 (2007), 448–458 | MR | Zbl

[10] Monakhov V. S., Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006

[11] Huppert B., Endliche Gruppen I, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[12] Monakhov V. S., “O proizvedenii $2$-razlozhimoi gruppy i gruppy Shmidta”, Dokl. AN BSSR, 18:10 (1974), 871–874 | Zbl

[13] Knyagina V. N., Monakhov V. S., “O $\pi^\prime$-svoistvakh konechnoi gruppy, obladayuschei $\pi$-khollovoi podgruppoi”, Sib. matem. zhurn., 52:2 (2011), 297–309 | MR | Zbl

[14] Monakhov V. S., “Proizvedenie konechnykh grupp, blizkikh k nilpotentnym”, Konechnye gruppy, Sb. st., Nauka i tekhnika, Minsk, 1975, 70–100