On composition factors of a finite group with $OS$-seminormal Sylow subgroup
Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 88-94

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite non-nilpotent group whose all proper subgroups nilpotent, is called the Schmidt group. A subgroup $A$ of a group $G$ is called $OS$-seminormal, if there exists a subgroup $B$ such that $G=AB$ and $A$ commutes with all Schmidt subgroups of $B$. For a prime number $r\ge 7$ is established $r$-solvability of the group, in which the Sylow $r$-subgroup $OS$-seminormal. For $r7$, all non-Abelian compositional factors are listed such group. The solvability of the group with $OS$-seminormal Sylow $2$- and $3$-subgroups.
@article{TIMB_2018_26_1_a11,
     author = {V. S. Monakhov and E. V. Zubei},
     title = {On composition factors of a finite group with $OS$-seminormal {Sylow} subgroup},
     journal = {Trudy Instituta matematiki},
     pages = {88--94},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a11/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - E. V. Zubei
TI  - On composition factors of a finite group with $OS$-seminormal Sylow subgroup
JO  - Trudy Instituta matematiki
PY  - 2018
SP  - 88
EP  - 94
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a11/
LA  - ru
ID  - TIMB_2018_26_1_a11
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A E. V. Zubei
%T On composition factors of a finite group with $OS$-seminormal Sylow subgroup
%J Trudy Instituta matematiki
%D 2018
%P 88-94
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a11/
%G ru
%F TIMB_2018_26_1_a11
V. S. Monakhov; E. V. Zubei. On composition factors of a finite group with $OS$-seminormal Sylow subgroup. Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 88-94. http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a11/