On composition factors of a finite group with $OS$-seminormal Sylow subgroup
Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 88-94
Voir la notice de l'article provenant de la source Math-Net.Ru
A finite non-nilpotent group whose all proper subgroups nilpotent, is called the Schmidt group. A subgroup $A$ of a group $G$ is called $OS$-seminormal, if there exists a subgroup $B$ such that $G=AB$ and $A$ commutes with all Schmidt subgroups of $B$. For a prime number $r\ge 7$ is established $r$-solvability of the group, in which the Sylow $r$-subgroup $OS$-seminormal. For $r7$, all non-Abelian compositional factors are listed such group. The solvability of the group with $OS$-seminormal Sylow $2$- and $3$-subgroups.
@article{TIMB_2018_26_1_a11,
author = {V. S. Monakhov and E. V. Zubei},
title = {On composition factors of a finite group with $OS$-seminormal {Sylow} subgroup},
journal = {Trudy Instituta matematiki},
pages = {88--94},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a11/}
}
TY - JOUR AU - V. S. Monakhov AU - E. V. Zubei TI - On composition factors of a finite group with $OS$-seminormal Sylow subgroup JO - Trudy Instituta matematiki PY - 2018 SP - 88 EP - 94 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a11/ LA - ru ID - TIMB_2018_26_1_a11 ER -
V. S. Monakhov; E. V. Zubei. On composition factors of a finite group with $OS$-seminormal Sylow subgroup. Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 88-94. http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a11/