Fork-join graphs are antimagic
Trudy Instituta matematiki, Tome 25 (2017) no. 2, pp. 21-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hartsfield-Ringel hypothesis about the antimagicness of connected graphs is investigated in the class of fork-join graphs. It is proven that all fork-join graphs are antimagic.
@article{TIMB_2017_25_2_a2,
     author = {V. N. Kalachev},
     title = {Fork-join graphs are antimagic},
     journal = {Trudy Instituta matematiki},
     pages = {21--28},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a2/}
}
TY  - JOUR
AU  - V. N. Kalachev
TI  - Fork-join graphs are antimagic
JO  - Trudy Instituta matematiki
PY  - 2017
SP  - 21
EP  - 28
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a2/
LA  - ru
ID  - TIMB_2017_25_2_a2
ER  - 
%0 Journal Article
%A V. N. Kalachev
%T Fork-join graphs are antimagic
%J Trudy Instituta matematiki
%D 2017
%P 21-28
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a2/
%G ru
%F TIMB_2017_25_2_a2
V. N. Kalachev. Fork-join graphs are antimagic. Trudy Instituta matematiki, Tome 25 (2017) no. 2, pp. 21-28. http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a2/

[1] Hartsfield N., Ringel G., Pearls in Graph Theory, Academic Press, Inc., Boston, 1990 ; revised version, 1994 | MR | Zbl

[2] Kayaaslan E., Lambert Th., Marchal L., Ucar B., Scheduling Series-Parallel Task Graphs to Minimize Peak Memory, Research Report RR-8975, Inria Grenoble Rhone-Alpes, Universite de Grenoble, 2016