On the number of integral polynomialswith bounds placed on the derivative at $p$-adic and real roots
Trudy Instituta matematiki, Tome 25 (2017) no. 2, pp. 6-10
Voir la notice de l'article provenant de la source Math-Net.Ru
Consider a class of polynomials defined by a fixed degree and a fixed height. Introducing an additional constraint on the value of the $p$-adic norm of the derivative at a $p$-adic root, we find an upper bound on the number of such polynomials. A similar bound has been proved in the case where the derivative is bounded at a real and a $p$-adic root.
@article{TIMB_2017_25_2_a0,
author = {M. L. Bezrukov},
title = {On the number of integral polynomialswith bounds placed on the derivative at $p$-adic and real roots},
journal = {Trudy Instituta matematiki},
pages = {6--10},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a0/}
}
TY - JOUR AU - M. L. Bezrukov TI - On the number of integral polynomialswith bounds placed on the derivative at $p$-adic and real roots JO - Trudy Instituta matematiki PY - 2017 SP - 6 EP - 10 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a0/ LA - ru ID - TIMB_2017_25_2_a0 ER -
M. L. Bezrukov. On the number of integral polynomialswith bounds placed on the derivative at $p$-adic and real roots. Trudy Instituta matematiki, Tome 25 (2017) no. 2, pp. 6-10. http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a0/