Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2017_25_2_a0, author = {M. L. Bezrukov}, title = {On the number of integral polynomialswith bounds placed on the derivative at $p$-adic and real roots}, journal = {Trudy Instituta matematiki}, pages = {6--10}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a0/} }
TY - JOUR AU - M. L. Bezrukov TI - On the number of integral polynomialswith bounds placed on the derivative at $p$-adic and real roots JO - Trudy Instituta matematiki PY - 2017 SP - 6 EP - 10 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a0/ LA - ru ID - TIMB_2017_25_2_a0 ER -
M. L. Bezrukov. On the number of integral polynomialswith bounds placed on the derivative at $p$-adic and real roots. Trudy Instituta matematiki, Tome 25 (2017) no. 2, pp. 6-10. http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a0/
[1] Sprindzhuk V. G., Problema Malera v metricheskoi teorii chisel, Nauka i tekhnika, Minsk, 1967 | MR
[2] Bernik V. I., Vasilev D. V., Kudin A. C., “O chisle tselochislennykh mnogochlenov zadannoi stepeni i ogranichennoi vysoty s maloi proizvodnoi v korne mnogochlena”, Trudy Instituta matematiki, 22:2 (2014), 3–8 | MR
[3] Koblits N., $p$-Adicheskie chisla, $p$-adicheskii analiz, Mir, M., 1982 | MR
[4] Bernik V. I., “Sovmestnye priblizheniya nulya znacheniyami tselochislennykh mnogochlenov”, Doklad AN SSSR, 44:1 (1980), 24–45 | Zbl
[5] Baker R. C., “Sprindzuk's theorem and Hausdorff dimension”, Mathematika, 23:2 (1976), 184–197 | DOI | MR | Zbl
[6] Bernik V. I., “Primenenie razmernosti Khausdorfa v teorii diofantovykh priblizhenii”, Acta Arithmetica, 42:3 (1983), 219–253 | DOI | MR | Zbl