Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2017_25_1_a7, author = {M. V. Shchukin}, title = {The minimal number of idempotent generators for $3$-homogeneous $\mathrm{C^*}$-algebra over two-dimensional compact oriented manifold}, journal = {Trudy Instituta matematiki}, pages = {93--96}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a7/} }
TY - JOUR AU - M. V. Shchukin TI - The minimal number of idempotent generators for $3$-homogeneous $\mathrm{C^*}$-algebra over two-dimensional compact oriented manifold JO - Trudy Instituta matematiki PY - 2017 SP - 93 EP - 96 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a7/ LA - ru ID - TIMB_2017_25_1_a7 ER -
%0 Journal Article %A M. V. Shchukin %T The minimal number of idempotent generators for $3$-homogeneous $\mathrm{C^*}$-algebra over two-dimensional compact oriented manifold %J Trudy Instituta matematiki %D 2017 %P 93-96 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a7/ %G ru %F TIMB_2017_25_1_a7
M. V. Shchukin. The minimal number of idempotent generators for $3$-homogeneous $\mathrm{C^*}$-algebra over two-dimensional compact oriented manifold. Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 93-96. http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a7/
[1] Massi U., Algebraicheskaya topologiya, M., 1977
[2] Khu Sy Tszyan, Teoriya gomotopii, M., 1964
[3] Schukin M. V., “Minimalnoe chislo idempotentov, porozhdayuschikh n-odnorodnye ($n \ge 4)$ S*-algebry nad dvumernym orientiruemym mnogoobraziem”, Vestsi NAN Belarusi, ser. fiz.-mat. navuk, 2012, no. 4, 61–66
[4] Schukin M. V., “Struktura n-odnorodnykh S*-algebr nad dvumernymi orientiruemymi mnogoobraziyami”, Vestsi NAN Belarusi, ser. fiz.-mat. navuk, 2010, no. 2, 12–17
[5] Antonevich A., Krupnik N., Integr. Equ. Oper. Theory, 38 (2000), 172–189 | DOI | MR
[6] Bottcher A., Gohberg I., Karlovich Yu., Krupnik N., Roch S., Silbermann B., Spitkovsky I., “Banach algebras generated by $n$ idempotents and applications”, Operator Theory. Advances and Applications, 90 (1996), 19–54 | MR
[7] Fell J. M. G., “The structure of fields of operator fields”, Acta Math., 106:3–4 (1961), 233–280 | DOI | MR
[8] Krupnik N., Roch S., Silbermann B., “On C*-algebras generated by idempotents”, J. Funct. Anal., 137:2 (1996), 303–319 | DOI | MR
[9] Mischenko A., Vector bundles and applications, M., 1984 | MR
[10] Rabanovich V. I., The matrix algebras and the theory of representations, PhD thesis, Kiev, 2000, 112 pp.
[11] Shchukin M., “Non-trivial C*-algebra generated by four idempotents”, Proceedings of the Institute of mathematics of NAS of Belarus, 9 (2001), 161–163 | MR
[12] Shchukin M., “Non-trivial C*-algebras generated by idempotents”, Proceedings of the International Conference on Nonlinear Operators, Differential Equations and Applications (Cluj-Napoca, Romania, 2002), v. 3, 353–359 | MR
[13] Tomiyama J., Takesaki M., “Application of fiber bundle to certain class of C*-algebras”, Tohoku Math. Journ., 13:3 (1961), 498–522 | DOI | MR