The minimal number of idempotent generators for $3$-homogeneous $\mathrm{C^*}$-algebra over two-dimensional compact oriented manifold
Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 93-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

Every $3$-homogeneous $\mathrm{C^*}$-algebra over two-dimensional compact oriented manifold can be realized as algebra of all continuous sections for the appropriate algebraic bundle. In the work we prove that such algebra can be generated by three idempotent elements from the algebra.
@article{TIMB_2017_25_1_a7,
     author = {M. V. Shchukin},
     title = {The minimal number of idempotent generators for $3$-homogeneous $\mathrm{C^*}$-algebra over two-dimensional compact oriented manifold},
     journal = {Trudy Instituta matematiki},
     pages = {93--96},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a7/}
}
TY  - JOUR
AU  - M. V. Shchukin
TI  - The minimal number of idempotent generators for $3$-homogeneous $\mathrm{C^*}$-algebra over two-dimensional compact oriented manifold
JO  - Trudy Instituta matematiki
PY  - 2017
SP  - 93
EP  - 96
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a7/
LA  - ru
ID  - TIMB_2017_25_1_a7
ER  - 
%0 Journal Article
%A M. V. Shchukin
%T The minimal number of idempotent generators for $3$-homogeneous $\mathrm{C^*}$-algebra over two-dimensional compact oriented manifold
%J Trudy Instituta matematiki
%D 2017
%P 93-96
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a7/
%G ru
%F TIMB_2017_25_1_a7
M. V. Shchukin. The minimal number of idempotent generators for $3$-homogeneous $\mathrm{C^*}$-algebra over two-dimensional compact oriented manifold. Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 93-96. http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a7/

[1] Massi U., Algebraicheskaya topologiya, M., 1977

[2] Khu Sy Tszyan, Teoriya gomotopii, M., 1964

[3] Schukin M. V., “Minimalnoe chislo idempotentov, porozhdayuschikh n-odnorodnye ($n \ge 4)$ S*-algebry nad dvumernym orientiruemym mnogoobraziem”, Vestsi NAN Belarusi, ser. fiz.-mat. navuk, 2012, no. 4, 61–66

[4] Schukin M. V., “Struktura n-odnorodnykh S*-algebr nad dvumernymi orientiruemymi mnogoobraziyami”, Vestsi NAN Belarusi, ser. fiz.-mat. navuk, 2010, no. 2, 12–17

[5] Antonevich A., Krupnik N., Integr. Equ. Oper. Theory, 38 (2000), 172–189 | DOI | MR

[6] Bottcher A., Gohberg I., Karlovich Yu., Krupnik N., Roch S., Silbermann B., Spitkovsky I., “Banach algebras generated by $n$ idempotents and applications”, Operator Theory. Advances and Applications, 90 (1996), 19–54 | MR

[7] Fell J. M. G., “The structure of fields of operator fields”, Acta Math., 106:3–4 (1961), 233–280 | DOI | MR

[8] Krupnik N., Roch S., Silbermann B., “On C*-algebras generated by idempotents”, J. Funct. Anal., 137:2 (1996), 303–319 | DOI | MR

[9] Mischenko A., Vector bundles and applications, M., 1984 | MR

[10] Rabanovich V. I., The matrix algebras and the theory of representations, PhD thesis, Kiev, 2000, 112 pp.

[11] Shchukin M., “Non-trivial C*-algebra generated by four idempotents”, Proceedings of the Institute of mathematics of NAS of Belarus, 9 (2001), 161–163 | MR

[12] Shchukin M., “Non-trivial C*-algebras generated by idempotents”, Proceedings of the International Conference on Nonlinear Operators, Differential Equations and Applications (Cluj-Napoca, Romania, 2002), v. 3, 353–359 | MR

[13] Tomiyama J., Takesaki M., “Application of fiber bundle to certain class of C*-algebras”, Tohoku Math. Journ., 13:3 (1961), 498–522 | DOI | MR