On a factorization of square matrices with positive determinant
Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 51-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that any square matrix with positive determinant over the field of real or rational numbers can be represented as a product of nine triangular matrices with positive diagonal elements. This result is the basis for solving of the uniform global attainability problem for linear systems with locally integrable and integrally bounded coefficients.
@article{TIMB_2017_25_1_a4,
     author = {A. A. Kozlov},
     title = {On a factorization of square matrices with positive determinant},
     journal = {Trudy Instituta matematiki},
     pages = {51--61},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a4/}
}
TY  - JOUR
AU  - A. A. Kozlov
TI  - On a factorization of square matrices with positive determinant
JO  - Trudy Instituta matematiki
PY  - 2017
SP  - 51
EP  - 61
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a4/
LA  - ru
ID  - TIMB_2017_25_1_a4
ER  - 
%0 Journal Article
%A A. A. Kozlov
%T On a factorization of square matrices with positive determinant
%J Trudy Instituta matematiki
%D 2017
%P 51-61
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a4/
%G ru
%F TIMB_2017_25_1_a4
A. A. Kozlov. On a factorization of square matrices with positive determinant. Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 51-61. http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a4/

[1] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, M., 1966, 576 pp.

[2] Zaitsev V. A., “Globalnaya dostizhimost i globalnaya lyapunovskaya privodimost dvumernykh i trekhmernykh lineinykh upravlyaemykh sistem s postoyannymi koeffitsientami”, Vestn. Udmurt. un-ta. Ser. Matematika, 2003, 31–62

[3] Makarov E. K., Popova S. N., Upravlyaemost asimptoticheskikh invariantov nestatsionarnykh lineinykh sistem, Belarus. navuka, Minsk, 2012, 407 pp.

[4] Kozlov A. A., Ints I. V., “O ravnomernoi globalnoi dostizhimosti dvumernykh lineinykh sistem s lokalno integriruemymi koeffitsientami”, Vestn. Udmurt. un-ta. Ser. Matematika. Mekhanika. Kompyuternye nauki, 27:2 (2017), 178–192

[5] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989, 655 pp.

[6] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976, 543 pp.