Generalized Markov--Stieltjes operator on Hardy and Lebesgue spaces
Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 39-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalized Markov–Stieltjes operator $S_\alpha$ is introduced, inverse formulas and operational properties for corresponding integral transform obtained, boundedness, nuclearity or compactness of operator $S_\alpha$ on Hardy and Lebesgue spaces for various values of complex parameter $\alpha$ proved, its trace is calculated, and estimates for its norm are given.
@article{TIMB_2017_25_1_a3,
     author = {I. S. Kovalyova and A. R. Mirotin},
     title = {Generalized {Markov--Stieltjes} operator on {Hardy} and {Lebesgue} spaces},
     journal = {Trudy Instituta matematiki},
     pages = {39--50},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a3/}
}
TY  - JOUR
AU  - I. S. Kovalyova
AU  - A. R. Mirotin
TI  - Generalized Markov--Stieltjes operator on Hardy and Lebesgue spaces
JO  - Trudy Instituta matematiki
PY  - 2017
SP  - 39
EP  - 50
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a3/
LA  - ru
ID  - TIMB_2017_25_1_a3
ER  - 
%0 Journal Article
%A I. S. Kovalyova
%A A. R. Mirotin
%T Generalized Markov--Stieltjes operator on Hardy and Lebesgue spaces
%J Trudy Instituta matematiki
%D 2017
%P 39-50
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a3/
%G ru
%F TIMB_2017_25_1_a3
I. S. Kovalyova; A. R. Mirotin. Generalized Markov--Stieltjes operator on Hardy and Lebesgue spaces. Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 39-50. http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a3/

[1] Mirotin A. R., Kovalyova I. S., “The Markov-Stieltjes transform on Hardy and Lebesgue spaces”, Integral Transforms and Special Functions, 27:12 (2016), 995–1007 | DOI | MR

[2] Kovaleva I. S., Mirotin A. R., “Teorema o svertke dlya preobrazovaniya Markova–Stiltesa”, Problemy fiziki, matematiki i tekhniki, 2013, no. 3(16), 66–70

[3] Mirotin A. R., Garmonicheskii analiz na abelevykh polugruppakh, GGU im. F. Skoriny, Gomel, 2008

[4] Widder D. V., The Laplace transform, Princeton Univ. Press, N.J., 1946 | MR

[5] Kusis P., Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984

[6] Duren P. L., Theory of $H^p$ spaces, Academic Press, New York–London, 1970 | MR

[7] Khelemskii A. Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo Moskov. un-ta, M., 1986

[8] Gohberg I., Goldberg S., Krupnik N., Traces and Determinants of Linear Operators. Operator Theory, Advances and Applications, 116, Birkhäuser Verlag, Basel–Boston–Berlin, 2000 | MR

[9] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, v. 1, Elementarnye funktsii, Nauka, M., 1981

[10] Zhu K., Operator theory in function spaces, Amer. Math. Soc., Providence, Rhode Island, 2007

[11] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966

[12] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovykh prostranstvakh, Nauka, M., 1965

[13] Pietsch A., Eigenvalues and s-numbers, Cambridge Studies in Advanced Math., 13, Cambridge Univ. Press, Cambridge, UK, 1987 | MR