On derivatives of superposition operators between the spaces~$L_p$
Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 15-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the first part of the article there are described some notions of the derivatives for nonlinear operators useful in applications. The main results about these derivatives and the comparative analysis are presented. The second part is devoted to the differentiability properties of the simplest nonlinear operator, the superposition operator, $\mathsf{f}x(s) = f(s,x(s))$ in the spaces $L_p$ ($1 \le p \le \infty$); in particular, the conditions of the differentiability in different senses (presented above) of these operators and their continuity and uniformly continuity on bounded sets.
@article{TIMB_2017_25_1_a1,
     author = {N. A. Evkhuta and O. N. Evkhuta and P. P. Zabreiko},
     title = {On derivatives of superposition operators between the spaces~$L_p$},
     journal = {Trudy Instituta matematiki},
     pages = {15--26},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a1/}
}
TY  - JOUR
AU  - N. A. Evkhuta
AU  - O. N. Evkhuta
AU  - P. P. Zabreiko
TI  - On derivatives of superposition operators between the spaces~$L_p$
JO  - Trudy Instituta matematiki
PY  - 2017
SP  - 15
EP  - 26
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a1/
LA  - ru
ID  - TIMB_2017_25_1_a1
ER  - 
%0 Journal Article
%A N. A. Evkhuta
%A O. N. Evkhuta
%A P. P. Zabreiko
%T On derivatives of superposition operators between the spaces~$L_p$
%J Trudy Instituta matematiki
%D 2017
%P 15-26
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a1/
%G ru
%F TIMB_2017_25_1_a1
N. A. Evkhuta; O. N. Evkhuta; P. P. Zabreiko. On derivatives of superposition operators between the spaces~$L_p$. Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 15-26. http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a1/

[1] Krasnoselskii M. A., Rutitskii Ya. B., “Differentsiruemost nelineinykh integralnykh operatorov v prostranstvakh Orlicha”, DAN SSSR, 89:4 (1953)

[2] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, M., 1956

[3] Vainberg M. M., Variatsionnye metody issledovaniya nelineinykh operatorov, Gosudarstvennoe izdatelstvo tekhnicheskoi literatury, M., 1956

[4] Van Shen-van, “Differentsiruemost operatora Nemytskogo”, DAN SSSR, 150:6 (1963)

[5] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966

[6] Appell J., Zabreiko P. P., Nonlinear superposition operators, 1989 | MR

[7] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nevskii dialekt, SPb., 2004

[8] Kartan A., Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971

[9] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981

[10] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1966

[11] Bonnans J. F., Shapiro A., Perturbation Analysis of Optimization Problems, Springer, 2000 | MR

[12] Evkhuta N. A., Evkhuta O. N., Zabreiko P. P., “NL-proizvodnye i NL-primitivnye v differentsialnom i integralnom ischislenii”, Doklady NAN Belarusi, 60:5 (2016), 34–40

[13] De La Valle-Pussen Sh. Zh., Kurs analiza beskonechno malykh, v. 1, Gosudarstvennoe tekhniko-teoreticheskoe izdatelstvo, M.–L., 1933

[14] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 1, M., 2003

[15] Zabreiko P. P., “O differentsirovanii funktsii v lineinykh prostranstvakh”: Shilov G. E., Differentsirovanie funktsii v lineinykh prostranstvakh, Yaroslavl, 1978, 83–118

[16] Zabreiko P. P., “The mean value theorem for differential mappings in Banach spaces”, Integral Transforms and Special Functions, 4:1–2 (1965), 153–162 | MR