Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2017_25_1_a0, author = {V. A. Emelichev and S. E. Bukhtoyarov}, title = {On radius of one stability type for a multicriteria investment problem with risk minimization}, journal = {Trudy Instituta matematiki}, pages = {3--14}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a0/} }
TY - JOUR AU - V. A. Emelichev AU - S. E. Bukhtoyarov TI - On radius of one stability type for a multicriteria investment problem with risk minimization JO - Trudy Instituta matematiki PY - 2017 SP - 3 EP - 14 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a0/ LA - ru ID - TIMB_2017_25_1_a0 ER -
%0 Journal Article %A V. A. Emelichev %A S. E. Bukhtoyarov %T On radius of one stability type for a multicriteria investment problem with risk minimization %J Trudy Instituta matematiki %D 2017 %P 3-14 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a0/ %G ru %F TIMB_2017_25_1_a0
V. A. Emelichev; S. E. Bukhtoyarov. On radius of one stability type for a multicriteria investment problem with risk minimization. Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a0/
[1] Sergienko I. V., Shilo V. P., Zadachi diskretnoi optimizatsii. Problemy, metody resheniya, issledovaniya, Kiev, 2003
[2] Sergienko I. V., Kozeratskaya L. N., Lebedeva T. T., Issledovanie ustoichivosti i parametricheskii analiz diskretnykh optimizatsionnykh zadach, Kiev, 1995
[3] Emelichev V. A., Kotov V. M., Kuzmin K. G., Lebedeva T. T., Semenova N. V., Sergienko T. I., “Ustoichivost i effektivnye algoritmy resheniya zadach diskretnoi optimizatsii s mnogimi kriteriyami i nepolnoi informatsiei”, Problemy upravleniya i informatiki, 2014, no. 1, 53–67
[4] Emelichev V. A., Kuzmin K. G., Leonovich A. M., “Ustoichivost v vektornykh kombinatornykh zadachakh optimizatsii”, Avtomatika i telemekhanika, 2004, no. 2, 79–92
[5] Emelichev V. A., Gurevskii E. E., “O yadre ustoichivosti mnogokriterialnoi kombinatornoi minimaksnoi zadachi”, Diskretnyi analiz i issledovanie operatsii, 15:5 (2008), 6–19
[6] Emelichev V. A., Kuzmin K. G., “Ustoichivost v vektornykh kombinatornykh zadach optimizatsii”, Kibernetika i sistemnyi analiz, 2008, no. 3, 103–111
[7] Emelichev V., Gurevsky E., Kuzmin K., “On stability of some lexicographic integer optimization problem”, Control and Cybernetics, 39:3 (2010), 811–826 | MR
[8] Emelichev V., Karelkina O., Kuzmin K., “Qualitative stability analysis of multicriteria combinatorial minimum problems”, Control and Cybernetics, 41:1 (2012), 57–79 | MR
[9] Gurevsky E., Battia O., Dolgui A., “Balancing of simple assembly lines under variations of task processing times”, Annals of Operation Research, 2012, no. 201, 265–286 | DOI | MR
[10] Lebedeva T. T., Semenova N. V., Sergienko T. I., “Ustoichivost vektornykh zadach tselochislennoi optimizatsii: vzaimosvyaz s ustoichivostyu mnozhestva optimalnykh i neoptimalnykh reshenii”, Kibernetika i sistemnyi analiz, 2005, no. 4, 90–100
[11] Lebedeva T. T., Sergienko T. I., “Raznye tipy ustoichivosti vektornoi zadachi tselochislennoi optimizatsii: obschii podkhod”, Kibernetika i sistemnyi analiz, 2008, no. 3, 142–148
[12] Libura M., van der Poort E., Sierksma G., van der Veen J., “Stability aspects of the travelling salesman problem based on k-best solutions”, Discrete Applied Mathematics, 87:1–3, 159–185 | MR
[13] Sotskov Yu., Sotskova N., Lai T.-C., Werner F., Scheduling under Uncertainty: Theory and Algorithms, Minsk, 2010
[14] Gordeev E. N., “Sravnenie trekh podkhodov k issledovaniyu ustoichivosti reshenii zadach diskretnoi optimizatsii i vychislitelnoi geometrii”, Diskretnyi analiz i issledovanie operatsii, 22:3 (2015), 18–35
[15] Leontev V. K., “Ustoichivost v lineinykh diskretnykh zadachakh”, Problemy kibernetiki, 35, M., 1979, 169–184
[16] Emelichev V., Nikulin Yu., “Numerical measure of strong stability and strong quasistability in the vector problem of integer linear programming”, Computer Science Journal of Moldova, 7:1 (1999), 105–117 | MR
[17] Emelichev V. A., Podkopaev D. P., “Ustoichivost i regulyarizatsiya vektornykh zadach tselochislennogo lineinogo programmirovaniya”, Diskretnyi analiz i issledovanie operatsii. Ser. 2, 8:1 (2001), 47–69
[18] Emelichev V., Girlich E., Nikulin Yu., Podkopaev D., “Stability and regularization of vector problem of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR
[19] Emelichev V., Nikulin Yu., Kuzmin K., “Stability analysis of the Pareto optimal solution for some vector Boolean optimization problem”, Optimization, 54:6 (2005), 545–561 | DOI | MR
[20] Emelichev V. A., Kuzmin K. G., “Ob odnom tipe ustoichivosti mnogokriterialnoi zadachi tselochislennogo lineinogo programmirovaniya v sluchae monotonnoi normy”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2007, no. 5, 45–51
[21] Emelichev V. A., Kuzmin K. G., “Obschii podkhod k issledovaniyu ustoichivosti pareto-optimalnogo resheniya vektornoi zadachi tselochislennogo lineinogo programmirovaniya”, Diskretnaya matematika, 19:3 (2007), 79–83 | DOI
[22] Emelichev V., Podkopaev D. P., “Quantitative stability analysis for vector problems of 0–1 programming”, Discrete Optimization, 7:1–2 (2010), 48–63 | DOI | MR
[23] Emelichev V. A., Kuzmin K. G., “Otsenki radiusa ustoichivosti vektornoi zadachi o maksimalnom razreze grafa”, Diskretnaya matematika, 25:2 (2013), 5–12 | DOI
[24] Emelichev V. A., Kuzmin K. G., “O radiuse $T_1$-ustoichivosti mnogokriterialnoi lineinoi bulevoi zadachi s normami Geldera v prostranstvakh parametrov”, Tavricheskii vestnik matematiki i informatiki, 2016, no. 1, 49–64
[25] Chakravarti N., Wagelmans A., “Calculation of stability radius for combinatorial optimization problems”, Operations Research Letters, 23:1 (1998), 1–7 | DOI | MR
[26] Van Hoesel S., Wagelmans A., “On the complexity of postoptimality analysis of 0–1 programs”, Discrete Applied Mathematics, 91:1–3 (1999), 251–263 | MR
[27] Roland J., De Smet Y., Rui Figueira J., “On the calculation of stability radius for multi-objective combinatorial optimization problems by inverse optimization”, 4OR, 10:4 (2012), 379–389 | DOI | MR
[28] Emelichev V. A., Korotkov V. V., “Ob ustoichivosti effektivnogo resheniya vektornoi investitsionnoi bulevoi zadachi s minimaksnymi kriteriyami Sevidzha”, Trudy Instituta matematiki NAN Belarusi, 18:2 (2010), 3–10
[29] Emelichev V. A., Korotkov V. V., Kuzmin K. G., “Mnogokriterialnaya investitsionnaya zadacha v usloviyakh neopredelennosti i riska”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2011, no. 6, 157–164
[30] Emelichev V. A., Korotkov V. V., “Ustoichivost vektornoi investitsionnoi bulevoi zadachi s kriteriyami Valda”, Diskretnaya matematika, 24:3 (2012), 3–16 | DOI
[31] Emelichev V. A., Korotkov V. V., “O radiuse ustoichivosti vektornoi investitsionnoi zadachi s kriteriyami minimaksnogo riska Sevidzha”, Kibernetika i sistemnyi analiz, 2012, no. 3, 68–77
[32] Emelichev V. A., Korotkov V. V., “Ob odnom tipe ustoichivosti vektornoi investitsionnoi zadachi s kriteriyami Valda”, Trudy instituta matematiki NAN Belarusi, 20:2 (2012), 10–17
[33] Emelichev V., Korotkov V., “Post-optimal analysis in a multicriteria Boolean problem of investment risk management based on Markowitz's portfolio theory”, Applied and Computational Mathematics, 12:3 (2013), 339–347 | MR
[34] Emelichev V., Korotkov V., Nikulin Yu., “Post-optimal analysis for Markowitz multicriterio portfolio optimization problem”, Journal of Multi-Criteria Decision Analysis, 21 (2014), 95–100 | DOI
[35] Bukhtoyarov S. E., Emelichev V. A., “Ob ustoichivosti vektornoi investitsionnoi zadachi s kriteriyami krainego optimizma”, Tavricheskii vestnik informatiki i matematiki, 25:2 (2014), 7–13
[36] Emelichev V., Korotkov V., “On stability of multicriteria investment Boolean problem with Wald's efficiency criteria”, Bulletin of Academy of Sciences of Moldova. Mathematics, 2014, no. 1(74), 3–13 | MR
[37] Bukhtoyarov S. E., Emelichev V. A., “Otsenki radiusa ustoichivosti zadachi portfelnoi optimizatsii s kriteriyami krainego optimizma i krainego pessimizma”, Izvestiya NAN Azerbaidzhana. Ser. fiz.-tekh. i matem. nauk, 34:6 (2014), 50–57
[38] Emelichev V. A., Ustilko E. V., “Postoptimalnyi analiz investitsionnoi zadachi s kriteriyami krainego optimizma”, Prikladnaya diskretnaya matematika, 2015, no. 3, 117–123
[39] Bukhtoyarov S. E., Emelichev V. A., “On the stability measure of solutions to a vector version of an investment problem”, Journal of Applied and Industrial Mathematics, 9:3 (2015), 328–334 | DOI | MR
[40] Emelichev V. A., Mychkov V. I., “Postoptimalnyi analiz vektornogo varianta odnoi investitsionnoi zadachi”, Trudy Instituta matematiki NAN Belarusi, 24:1 (2016), 9–18
[41] Efimchik N. E., Podkopaev D. P., “O yadre i radiuse ustoichivosti v traektornoi zadache vektornoi diskretnoi optimizatsii”, Vestnik BGU. Ser. 1, 1996, no. 1, 48–52
[42] Emelichev V. A., Nikulin Yu. V., “Numerical measure of strong stability and strong quasistability in the vector problem of integer linear programming”, Computer Science Journal of Moldova, 7:1 (1999), 105–117 | MR
[43] Markowitz H. M., Portfolio Selection: Efficient Diversification of Investments, New York, 1991 | MR
[44] Gepman L. N., Riski v ekonomike, M., 2002
[45] Shapkin A. S., Ekonomicheskie i finansovye riski, M., 2003
[46] Crouhy M., Galai D., Mark R., The Essentials of Risk Management, New York, 2005
[47] Nogin V. D., Prinyatie reshenii v mnogokriterialnoi srede: kolichestvennyi podkhod, M., 2002
[48] Lotov A. V., Pospelov I. I., Mnogokriterialnye zadachi prinyatiya reshenii, M., 2008
[49] Miettinen K., Nonlimear Multiobjective Optimization, Boston, 1999 | MR
[50] Savage L. J., The Foundations of Statistics, New York, 1972 | MR
[51] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, M., 1972
[52] Fedorov V. V., Chislennye metody maksimina, M., 1979
[53] Du D., Pardalos P. (eds.), Minimax and Applications, Dordrecht, 1995 | MR