On radius of one stability type for a multicriteria investment problem with risk minimization
Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

Basing on the Markowitz portfolio theory we formulate a multicriteria Boolean investment problem with generalized risk criteria. We consider the case when the Hölder and Chebyshev norms are defined in all the three spaces of the problem parameters. Attainable bounds of the problem stability radius are given.
@article{TIMB_2017_25_1_a0,
     author = {V. A. Emelichev and S. E. Bukhtoyarov},
     title = {On radius of one stability type for a multicriteria investment problem with risk minimization},
     journal = {Trudy Instituta matematiki},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a0/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - S. E. Bukhtoyarov
TI  - On radius of one stability type for a multicriteria investment problem with risk minimization
JO  - Trudy Instituta matematiki
PY  - 2017
SP  - 3
EP  - 14
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a0/
LA  - ru
ID  - TIMB_2017_25_1_a0
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A S. E. Bukhtoyarov
%T On radius of one stability type for a multicriteria investment problem with risk minimization
%J Trudy Instituta matematiki
%D 2017
%P 3-14
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a0/
%G ru
%F TIMB_2017_25_1_a0
V. A. Emelichev; S. E. Bukhtoyarov. On radius of one stability type for a multicriteria investment problem with risk minimization. Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a0/

[1] Sergienko I. V., Shilo V. P., Zadachi diskretnoi optimizatsii. Problemy, metody resheniya, issledovaniya, Kiev, 2003

[2] Sergienko I. V., Kozeratskaya L. N., Lebedeva T. T., Issledovanie ustoichivosti i parametricheskii analiz diskretnykh optimizatsionnykh zadach, Kiev, 1995

[3] Emelichev V. A., Kotov V. M., Kuzmin K. G., Lebedeva T. T., Semenova N. V., Sergienko T. I., “Ustoichivost i effektivnye algoritmy resheniya zadach diskretnoi optimizatsii s mnogimi kriteriyami i nepolnoi informatsiei”, Problemy upravleniya i informatiki, 2014, no. 1, 53–67

[4] Emelichev V. A., Kuzmin K. G., Leonovich A. M., “Ustoichivost v vektornykh kombinatornykh zadachakh optimizatsii”, Avtomatika i telemekhanika, 2004, no. 2, 79–92

[5] Emelichev V. A., Gurevskii E. E., “O yadre ustoichivosti mnogokriterialnoi kombinatornoi minimaksnoi zadachi”, Diskretnyi analiz i issledovanie operatsii, 15:5 (2008), 6–19

[6] Emelichev V. A., Kuzmin K. G., “Ustoichivost v vektornykh kombinatornykh zadach optimizatsii”, Kibernetika i sistemnyi analiz, 2008, no. 3, 103–111

[7] Emelichev V., Gurevsky E., Kuzmin K., “On stability of some lexicographic integer optimization problem”, Control and Cybernetics, 39:3 (2010), 811–826 | MR

[8] Emelichev V., Karelkina O., Kuzmin K., “Qualitative stability analysis of multicriteria combinatorial minimum problems”, Control and Cybernetics, 41:1 (2012), 57–79 | MR

[9] Gurevsky E., Battia O., Dolgui A., “Balancing of simple assembly lines under variations of task processing times”, Annals of Operation Research, 2012, no. 201, 265–286 | DOI | MR

[10] Lebedeva T. T., Semenova N. V., Sergienko T. I., “Ustoichivost vektornykh zadach tselochislennoi optimizatsii: vzaimosvyaz s ustoichivostyu mnozhestva optimalnykh i neoptimalnykh reshenii”, Kibernetika i sistemnyi analiz, 2005, no. 4, 90–100

[11] Lebedeva T. T., Sergienko T. I., “Raznye tipy ustoichivosti vektornoi zadachi tselochislennoi optimizatsii: obschii podkhod”, Kibernetika i sistemnyi analiz, 2008, no. 3, 142–148

[12] Libura M., van der Poort E., Sierksma G., van der Veen J., “Stability aspects of the travelling salesman problem based on k-best solutions”, Discrete Applied Mathematics, 87:1–3, 159–185 | MR

[13] Sotskov Yu., Sotskova N., Lai T.-C., Werner F., Scheduling under Uncertainty: Theory and Algorithms, Minsk, 2010

[14] Gordeev E. N., “Sravnenie trekh podkhodov k issledovaniyu ustoichivosti reshenii zadach diskretnoi optimizatsii i vychislitelnoi geometrii”, Diskretnyi analiz i issledovanie operatsii, 22:3 (2015), 18–35

[15] Leontev V. K., “Ustoichivost v lineinykh diskretnykh zadachakh”, Problemy kibernetiki, 35, M., 1979, 169–184

[16] Emelichev V., Nikulin Yu., “Numerical measure of strong stability and strong quasistability in the vector problem of integer linear programming”, Computer Science Journal of Moldova, 7:1 (1999), 105–117 | MR

[17] Emelichev V. A., Podkopaev D. P., “Ustoichivost i regulyarizatsiya vektornykh zadach tselochislennogo lineinogo programmirovaniya”, Diskretnyi analiz i issledovanie operatsii. Ser. 2, 8:1 (2001), 47–69

[18] Emelichev V., Girlich E., Nikulin Yu., Podkopaev D., “Stability and regularization of vector problem of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR

[19] Emelichev V., Nikulin Yu., Kuzmin K., “Stability analysis of the Pareto optimal solution for some vector Boolean optimization problem”, Optimization, 54:6 (2005), 545–561 | DOI | MR

[20] Emelichev V. A., Kuzmin K. G., “Ob odnom tipe ustoichivosti mnogokriterialnoi zadachi tselochislennogo lineinogo programmirovaniya v sluchae monotonnoi normy”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2007, no. 5, 45–51

[21] Emelichev V. A., Kuzmin K. G., “Obschii podkhod k issledovaniyu ustoichivosti pareto-optimalnogo resheniya vektornoi zadachi tselochislennogo lineinogo programmirovaniya”, Diskretnaya matematika, 19:3 (2007), 79–83 | DOI

[22] Emelichev V., Podkopaev D. P., “Quantitative stability analysis for vector problems of 0–1 programming”, Discrete Optimization, 7:1–2 (2010), 48–63 | DOI | MR

[23] Emelichev V. A., Kuzmin K. G., “Otsenki radiusa ustoichivosti vektornoi zadachi o maksimalnom razreze grafa”, Diskretnaya matematika, 25:2 (2013), 5–12 | DOI

[24] Emelichev V. A., Kuzmin K. G., “O radiuse $T_1$-ustoichivosti mnogokriterialnoi lineinoi bulevoi zadachi s normami Geldera v prostranstvakh parametrov”, Tavricheskii vestnik matematiki i informatiki, 2016, no. 1, 49–64

[25] Chakravarti N., Wagelmans A., “Calculation of stability radius for combinatorial optimization problems”, Operations Research Letters, 23:1 (1998), 1–7 | DOI | MR

[26] Van Hoesel S., Wagelmans A., “On the complexity of postoptimality analysis of 0–1 programs”, Discrete Applied Mathematics, 91:1–3 (1999), 251–263 | MR

[27] Roland J., De Smet Y., Rui Figueira J., “On the calculation of stability radius for multi-objective combinatorial optimization problems by inverse optimization”, 4OR, 10:4 (2012), 379–389 | DOI | MR

[28] Emelichev V. A., Korotkov V. V., “Ob ustoichivosti effektivnogo resheniya vektornoi investitsionnoi bulevoi zadachi s minimaksnymi kriteriyami Sevidzha”, Trudy Instituta matematiki NAN Belarusi, 18:2 (2010), 3–10

[29] Emelichev V. A., Korotkov V. V., Kuzmin K. G., “Mnogokriterialnaya investitsionnaya zadacha v usloviyakh neopredelennosti i riska”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2011, no. 6, 157–164

[30] Emelichev V. A., Korotkov V. V., “Ustoichivost vektornoi investitsionnoi bulevoi zadachi s kriteriyami Valda”, Diskretnaya matematika, 24:3 (2012), 3–16 | DOI

[31] Emelichev V. A., Korotkov V. V., “O radiuse ustoichivosti vektornoi investitsionnoi zadachi s kriteriyami minimaksnogo riska Sevidzha”, Kibernetika i sistemnyi analiz, 2012, no. 3, 68–77

[32] Emelichev V. A., Korotkov V. V., “Ob odnom tipe ustoichivosti vektornoi investitsionnoi zadachi s kriteriyami Valda”, Trudy instituta matematiki NAN Belarusi, 20:2 (2012), 10–17

[33] Emelichev V., Korotkov V., “Post-optimal analysis in a multicriteria Boolean problem of investment risk management based on Markowitz's portfolio theory”, Applied and Computational Mathematics, 12:3 (2013), 339–347 | MR

[34] Emelichev V., Korotkov V., Nikulin Yu., “Post-optimal analysis for Markowitz multicriterio portfolio optimization problem”, Journal of Multi-Criteria Decision Analysis, 21 (2014), 95–100 | DOI

[35] Bukhtoyarov S. E., Emelichev V. A., “Ob ustoichivosti vektornoi investitsionnoi zadachi s kriteriyami krainego optimizma”, Tavricheskii vestnik informatiki i matematiki, 25:2 (2014), 7–13

[36] Emelichev V., Korotkov V., “On stability of multicriteria investment Boolean problem with Wald's efficiency criteria”, Bulletin of Academy of Sciences of Moldova. Mathematics, 2014, no. 1(74), 3–13 | MR

[37] Bukhtoyarov S. E., Emelichev V. A., “Otsenki radiusa ustoichivosti zadachi portfelnoi optimizatsii s kriteriyami krainego optimizma i krainego pessimizma”, Izvestiya NAN Azerbaidzhana. Ser. fiz.-tekh. i matem. nauk, 34:6 (2014), 50–57

[38] Emelichev V. A., Ustilko E. V., “Postoptimalnyi analiz investitsionnoi zadachi s kriteriyami krainego optimizma”, Prikladnaya diskretnaya matematika, 2015, no. 3, 117–123

[39] Bukhtoyarov S. E., Emelichev V. A., “On the stability measure of solutions to a vector version of an investment problem”, Journal of Applied and Industrial Mathematics, 9:3 (2015), 328–334 | DOI | MR

[40] Emelichev V. A., Mychkov V. I., “Postoptimalnyi analiz vektornogo varianta odnoi investitsionnoi zadachi”, Trudy Instituta matematiki NAN Belarusi, 24:1 (2016), 9–18

[41] Efimchik N. E., Podkopaev D. P., “O yadre i radiuse ustoichivosti v traektornoi zadache vektornoi diskretnoi optimizatsii”, Vestnik BGU. Ser. 1, 1996, no. 1, 48–52

[42] Emelichev V. A., Nikulin Yu. V., “Numerical measure of strong stability and strong quasistability in the vector problem of integer linear programming”, Computer Science Journal of Moldova, 7:1 (1999), 105–117 | MR

[43] Markowitz H. M., Portfolio Selection: Efficient Diversification of Investments, New York, 1991 | MR

[44] Gepman L. N., Riski v ekonomike, M., 2002

[45] Shapkin A. S., Ekonomicheskie i finansovye riski, M., 2003

[46] Crouhy M., Galai D., Mark R., The Essentials of Risk Management, New York, 2005

[47] Nogin V. D., Prinyatie reshenii v mnogokriterialnoi srede: kolichestvennyi podkhod, M., 2002

[48] Lotov A. V., Pospelov I. I., Mnogokriterialnye zadachi prinyatiya reshenii, M., 2008

[49] Miettinen K., Nonlimear Multiobjective Optimization, Boston, 1999 | MR

[50] Savage L. J., The Foundations of Statistics, New York, 1972 | MR

[51] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, M., 1972

[52] Fedorov V. V., Chislennye metody maksimina, M., 1979

[53] Du D., Pardalos P. (eds.), Minimax and Applications, Dordrecht, 1995 | MR