Automorphisms of graph with intersection array $\{115,96,16;1,8,92\}$
Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 91-97
Voir la notice de l'article provenant de la source Math-Net.Ru
In [1] there were found intersection arrays of distance-regular graphs which have strongly regular neighbourhoods with second eigenvalue $t,$ $2$ Within the pale of the program of investigation of automorphisms of respective graphs possible orders and subgraphs of fixed points of automorphisms of a distance-regular graph with intersection array $\{115,96,16;1,8,92\}$ are found. In particular, it is proven that in the case of existence this graph is not vertex-symmetric.
@article{TIMB_2016_24_2_a8,
author = {A. A. Makhnev and D. V. Paduchikh},
title = {Automorphisms of graph with intersection array $\{115,96,16;1,8,92\}$},
journal = {Trudy Instituta matematiki},
pages = {91--97},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a8/}
}
TY - JOUR
AU - A. A. Makhnev
AU - D. V. Paduchikh
TI - Automorphisms of graph with intersection array $\{115,96,16;1,8,92\}$
JO - Trudy Instituta matematiki
PY - 2016
SP - 91
EP - 97
VL - 24
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a8/
LA - ru
ID - TIMB_2016_24_2_a8
ER -
A. A. Makhnev; D. V. Paduchikh. Automorphisms of graph with intersection array $\{115,96,16;1,8,92\}$. Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 91-97. http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a8/