Automorphisms of graph with intersection array $\{115,96,16;1,8,92\}$
Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 91-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

In [1] there were found intersection arrays of distance-regular graphs which have strongly regular neighbourhoods with second eigenvalue $t,$ $2$ Within the pale of the program of investigation of automorphisms of respective graphs possible orders and subgraphs of fixed points of automorphisms of a distance-regular graph with intersection array $\{115,96,16;1,8,92\}$ are found. In particular, it is proven that in the case of existence this graph is not vertex-symmetric.
@article{TIMB_2016_24_2_a8,
     author = {A. A. Makhnev and D. V. Paduchikh},
     title = {Automorphisms of graph with intersection array $\{115,96,16;1,8,92\}$},
     journal = {Trudy Instituta matematiki},
     pages = {91--97},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a8/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
TI  - Automorphisms of graph with intersection array $\{115,96,16;1,8,92\}$
JO  - Trudy Instituta matematiki
PY  - 2016
SP  - 91
EP  - 97
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a8/
LA  - ru
ID  - TIMB_2016_24_2_a8
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%T Automorphisms of graph with intersection array $\{115,96,16;1,8,92\}$
%J Trudy Instituta matematiki
%D 2016
%P 91-97
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a8/
%G ru
%F TIMB_2016_24_2_a8
A. A. Makhnev; D. V. Paduchikh. Automorphisms of graph with intersection array $\{115,96,16;1,8,92\}$. Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 91-97. http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a8/

[1] Makhnev A. A., Paduchikh D. V., “Distantsionno regulyarnye grafy, v kotorykh okrestnosti vershin silno regulyarny so vtorym sobstvennym znacheniem, ne bolshim 3”, Doklady akademii nauk, 464:4 (2015), 396–400 | DOI | Zbl

[2] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989 | MR | Zbl

[3] Makhnev A. A., Paduchikh D. V., Samoilenko M. S., “Avtomorfizmy grafa s massivom peresechenii $\{115,96,30,1;1,10,96,115\}$”, Doklady akademii nauk, 451:6 (2013), 615–619 | DOI | Zbl

[4] Cameron P. J., Permutation Groups, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[5] Gavrilyuk A. L., Makhnev A. A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{56,45,1;1,9,56\}$”, Doklady akademii nauk, 432:5 (2010), 512–515

[6] Zavarnitsine A. V., “Finite simple groups with narrow prime spectrum”, Siberian electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl

[7] Jansen C. et al., An Atlas of Brauer characters, Clarendon Press, Oxford, 1995 | Zbl