Algebraic numbers in the sets of real and complex numbers of small Lebesgue measure
Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 37-43

Voir la notice de l'article provenant de la source Math-Net.Ru

Algebraic numbers of degree $2n$ are investigated. For any $Q \ge {Q_0}\left( n \right)$ we prove that there exist circles $K_1,\cdots ,K_n$ on the complex plane with the radiuses $max(r_i) c_1 Q^{ - 1}$ containing no algebraic numbers of height less then $Q$. We also prove that for $min(r_i) > {c'}_i Q^{ - \frac{1}{2n}}$ circles $K_1,... ,K_n$ contain algebraic numbers and their quantity is bounded below by ${c_{20}}Q^{2n+1}\mu K$.
@article{TIMB_2016_24_2_a4,
     author = {M. A. Zhur},
     title = {Algebraic numbers in the sets of real and complex numbers of small {Lebesgue} measure},
     journal = {Trudy Instituta matematiki},
     pages = {37--43},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a4/}
}
TY  - JOUR
AU  - M. A. Zhur
TI  - Algebraic numbers in the sets of real and complex numbers of small Lebesgue measure
JO  - Trudy Instituta matematiki
PY  - 2016
SP  - 37
EP  - 43
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a4/
LA  - ru
ID  - TIMB_2016_24_2_a4
ER  - 
%0 Journal Article
%A M. A. Zhur
%T Algebraic numbers in the sets of real and complex numbers of small Lebesgue measure
%J Trudy Instituta matematiki
%D 2016
%P 37-43
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a4/
%G ru
%F TIMB_2016_24_2_a4
M. A. Zhur. Algebraic numbers in the sets of real and complex numbers of small Lebesgue measure. Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 37-43. http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a4/