Algebraic numbers in the sets of real and complex numbers of small Lebesgue measure
Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 37-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

Algebraic numbers of degree $2n$ are investigated. For any $Q \ge {Q_0}\left( n \right)$ we prove that there exist circles $K_1,\cdots ,K_n$ on the complex plane with the radiuses $max(r_i) c_1 Q^{ - 1}$ containing no algebraic numbers of height less then $Q$. We also prove that for $min(r_i) > {c'}_i Q^{ - \frac{1}{2n}}$ circles $K_1,... ,K_n$ contain algebraic numbers and their quantity is bounded below by ${c_{20}}Q^{2n+1}\mu K$.
@article{TIMB_2016_24_2_a4,
     author = {M. A. Zhur},
     title = {Algebraic numbers in the sets of real and complex numbers of small {Lebesgue} measure},
     journal = {Trudy Instituta matematiki},
     pages = {37--43},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a4/}
}
TY  - JOUR
AU  - M. A. Zhur
TI  - Algebraic numbers in the sets of real and complex numbers of small Lebesgue measure
JO  - Trudy Instituta matematiki
PY  - 2016
SP  - 37
EP  - 43
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a4/
LA  - ru
ID  - TIMB_2016_24_2_a4
ER  - 
%0 Journal Article
%A M. A. Zhur
%T Algebraic numbers in the sets of real and complex numbers of small Lebesgue measure
%J Trudy Instituta matematiki
%D 2016
%P 37-43
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a4/
%G ru
%F TIMB_2016_24_2_a4
M. A. Zhur. Algebraic numbers in the sets of real and complex numbers of small Lebesgue measure. Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 37-43. http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a4/

[1] Lamchanovskaya M. V., “Algebraicheskie chisla tretei stepeni na kompleksnoi ploskosti”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2014, no. 4, 108–111

[2] Bernik V. I., Gettse F., “Raspredelenie deistvitelnykh algebraicheskikh chisel proizvolnoi stepeni v korotkikh intervalakh”, Izv. RAN. Ser. matem., 79:1 (2015), 21–42 | DOI | MR | Zbl

[3] Gelfond A. O., Transtsendentnye i algebraicheskie chisla, GITTL, M., 1952 | MR

[4] Feldman N. I., “Approksimatsiya nekotorykh transtsendentnykh chisel. I. Approksimatsiya logarifmov algebraicheskikh chisel”, Izv. AN SSSR. Ser. matem., 15:1 (1951)

[5] Sprindzhuk V. G., Problema Malera v metricheskoi torii chisel, Nauka i tekhnika, Minsk, 1967 | MR

[6] Lamchanovskaya M. V., Kalosha N. I., “O raspredelenii kompleksnykh algebraicheskikh chisel v krugakh malogo radiusa na kompleksnoi ploskosti”, Tr. In-ta matem., 23:1 (2015), 85 | MR

[7] Kassels Dzh.V.S., Vvedenie v teoriyu diofantovykh priblizhenii, IL, M., 1961, 10 pp.

[8] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1987, 24 pp.

[9] Mahler K., “Ueber das Mass der Menge aller S-Zahlen”, Math. Ann., 1932, 106 | MR | Zbl

[10] Bernik V. I., “Metricheskaya teorema o sovmestnom priblizhenii nulya znacheniyami tselochislennykh mnogochlenov”, Izv. AN SSSR. Ser. matem., 44:1 (1980) | Zbl

[11] Sprindzhuk V. G., “Dokazatelstvo gipotezy Malera o mere mnozhestva S-chisel”, Izv. AN SSSR. Ser. matem., 29:2 (1965) | MR | Zbl

[12] Schneider Th., Einfuehrung in die Transzendenten Zahlen, Springer-Verlag, 1957, 139 pp. | MR

[13] Budarina N. V., Bernik V. I., O'Donnell Kh., “Deistvitelnye algebraicheskie chisla tretei stepeni v korotkikh intervalakh”, Doklady NAN Belarusi, 56:4 (2012), 23–26 | MR | Zbl