Algebraic numbers in the sets of real and complex numbers of small Lebesgue measure
Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 37-43
Voir la notice de l'article provenant de la source Math-Net.Ru
Algebraic numbers of degree $2n$ are investigated. For any $Q \ge {Q_0}\left( n \right)$ we prove that there exist circles $K_1,\cdots ,K_n$ on the complex plane with the radiuses $max(r_i) c_1 Q^{ - 1}$ containing no algebraic numbers of height less then $Q$. We also prove that for $min(r_i) > {c'}_i Q^{ - \frac{1}{2n}}$ circles $K_1,... ,K_n$ contain algebraic numbers and their quantity is bounded below by ${c_{20}}Q^{2n+1}\mu K$.
@article{TIMB_2016_24_2_a4,
author = {M. A. Zhur},
title = {Algebraic numbers in the sets of real and complex numbers of small {Lebesgue} measure},
journal = {Trudy Instituta matematiki},
pages = {37--43},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a4/}
}
M. A. Zhur. Algebraic numbers in the sets of real and complex numbers of small Lebesgue measure. Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 37-43. http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a4/