Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2016_24_2_a3, author = {A. V. Zherelo}, title = {On one approximate formula for the case of martingales with random start condition}, journal = {Trudy Instituta matematiki}, pages = {32--36}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a3/} }
A. V. Zherelo. On one approximate formula for the case of martingales with random start condition. Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 32-36. http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a3/
[1] Egorov A. D., Sobolevsky P. I., Yanovich L. A., Functiona Integrals; Approximate Evaluation and Applications, Kluwer Acad. Publ., Dordrecht, 1993 | MR
[2] Egorov A. D., Zhidkov E. P., Lobanov Yu. Yu., Vvedenie v teoriyu i prilozheniya funktsionalnogo integrirovaniya, Fizmatlit, M., 2006
[3] Zherelo A., “On convergence of the method based on approximately exact formulas for functional polynomials for calculation of expectations of functionals to solutions of stochastic differential equations”, Monte Carlo Methods and Applications, 19:3 (2013), 183–199 | DOI | MR | Zbl
[4] Applebaum D., Levy processes and stochastic calculus, Cambridge University Press, 2009 | MR | Zbl
[5] Kloeden P.E., Platen E., Numerical Solution of Stochastic Differential Equations, Appl. Math., 23, Third printing, Springer, 1999 | MR