On one approximate formula for the case of martingales with random start condition
Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 32-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the stochastic differential equation with random initial condition was considered. Here was supposed, that the equation is the equation without drift. The approximate formula for calculation of the mathematical expectation on a solution of the equation was constructed. The accuracy of the proposed formula was estimated. The results of numerical experiments are given.
@article{TIMB_2016_24_2_a3,
     author = {A. V. Zherelo},
     title = {On one approximate formula for the case of martingales with random start condition},
     journal = {Trudy Instituta matematiki},
     pages = {32--36},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a3/}
}
TY  - JOUR
AU  - A. V. Zherelo
TI  - On one approximate formula for the case of martingales with random start condition
JO  - Trudy Instituta matematiki
PY  - 2016
SP  - 32
EP  - 36
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a3/
LA  - ru
ID  - TIMB_2016_24_2_a3
ER  - 
%0 Journal Article
%A A. V. Zherelo
%T On one approximate formula for the case of martingales with random start condition
%J Trudy Instituta matematiki
%D 2016
%P 32-36
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a3/
%G ru
%F TIMB_2016_24_2_a3
A. V. Zherelo. On one approximate formula for the case of martingales with random start condition. Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 32-36. http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a3/

[1] Egorov A. D., Sobolevsky P. I., Yanovich L. A., Functiona Integrals; Approximate Evaluation and Applications, Kluwer Acad. Publ., Dordrecht, 1993 | MR

[2] Egorov A. D., Zhidkov E. P., Lobanov Yu. Yu., Vvedenie v teoriyu i prilozheniya funktsionalnogo integrirovaniya, Fizmatlit, M., 2006

[3] Zherelo A., “On convergence of the method based on approximately exact formulas for functional polynomials for calculation of expectations of functionals to solutions of stochastic differential equations”, Monte Carlo Methods and Applications, 19:3 (2013), 183–199 | DOI | MR | Zbl

[4] Applebaum D., Levy processes and stochastic calculus, Cambridge University Press, 2009 | MR | Zbl

[5] Kloeden P.E., Platen E., Numerical Solution of Stochastic Differential Equations, Appl. Math., 23, Third printing, Springer, 1999 | MR