On extension of the Legendre transform on $C(X)$ and its applications
Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

In some applications there are functionals on $C(X)$, which is the the space of continuous functions on a compact topological space $X$, for which variational principles apply. These variational principles represent the functional $f$ as a Legendre transform of some functional $g$ on the dual space. In applications the function $a(x)=\exp\varphi(x)$ usually has physical interpretations and the functional $f$ generates the functional $f(\ln a)$. The latter is defined on the cone of positive continuous functions. In the paper the questions of the extension of this functional and the variational principle taking place for such an extension are raised. The main difficulty is that the functional $f(\ln a)$ can have no continuous prolongation. The proof is based on the generalization of the classical Dini theorem, which was obtained in the process.
@article{TIMB_2016_24_2_a0,
     author = {A. B. Antonevich and E. Y. Leonova},
     title = {On extension of the {Legendre} transform on $C(X)$ and its applications},
     journal = {Trudy Instituta matematiki},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a0/}
}
TY  - JOUR
AU  - A. B. Antonevich
AU  - E. Y. Leonova
TI  - On extension of the Legendre transform on $C(X)$ and its applications
JO  - Trudy Instituta matematiki
PY  - 2016
SP  - 3
EP  - 13
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a0/
LA  - ru
ID  - TIMB_2016_24_2_a0
ER  - 
%0 Journal Article
%A A. B. Antonevich
%A E. Y. Leonova
%T On extension of the Legendre transform on $C(X)$ and its applications
%J Trudy Instituta matematiki
%D 2016
%P 3-13
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a0/
%G ru
%F TIMB_2016_24_2_a0
A. B. Antonevich; E. Y. Leonova. On extension of the Legendre transform on $C(X)$ and its applications. Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a0/

[1] Danford N., Shvarts Dzh., Lineinye operatory, v. 1, Obschaya teoriya, IL, M., 1962

[2] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[3] Kadets V. M., Kurs funktsionalnogo analiza, KhNU im. V.N. Karazina, Kharkov, 2006 | MR

[4] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999

[5] Antonevich A. B., “On Extension of the Legendre Transform”, Geometric Methods in Physics, Proceedings of the XXVIII Workshop on Geometric Methods in Physics, American Institute of Physics, Melville, New York, 2009, 1–6 | Zbl

[6] Antonevich A. B., “Rasshirenie prostranstva C(X), svyazannoe s preobrazovaniem Lezhandra”, Aktualnye problemy sovremennogo analiza, sb. nauch. tr., Grodnenskii gos. un-t im. Ya. Kupaly, eds. Yu.M. Vuvunikyan, Ya.V. Radyno, V.G. Krotov, GrGU, Grodno, 2009, 4–18

[7] Antonevich A. B., Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Universitetskoe, Minsk, 1988 | MR

[8] Kudryavtsev L. D., Kurs matematicheskogo analiza, v 3 t., v. 2, Ryady. Differentsialnoe i integralnoe ischisleniya funktsii mnogikh peremennykh, 5-e izd., pererabot. i dop., Drofa, M., 2004

[9] Bakhtin V. I., “On t-entropy and variational principle for the spectral radius of weighted shift operators”, Ergodic Theory Dynam. Systems, 30:5 (2010), 1331–1342 | DOI | MR | Zbl

[10] Antonevich A. B., Bakhtin V. I., Lebedev A. V., “On t-entropy and variational principle for the spectral radii of transfer and weighted shift operators”, Ergodic Theory Dynam. Systems, 31:4 (2011), 995–1042 | DOI | MR | Zbl

[11] Antonevich A. B., Zaikovski K., “Variatsionnye printsipy dlya spektralnogo radiusa funktsionalnykh operatorov”, Matem. sb., 197:5 (2006), 3–50 | DOI | MR | Zbl

[12] Latushkin Yu. D., “Ob integro-funktsionalnykh operatorakh s nevzaimnoodnoznachnym sdvigom”, Izv. AN SSSR. Ser. matem., 45:6 (1981), 1241–1257 | MR | Zbl

[13] Latushkin Yu. D., Stepin A. M., “Operator vzveshennogo sdviga na topologicheskoi markovskoi tsepi”, Funkts. analiz i ego pril., 22:4 (1988), 86–87 | MR

[14] Latushkin Yu. D., Stepin A. M., “Operatory vzveshennogo sdviga i lineinye rasshireniya dinamicheskikh sistem”, UMN, 46:2 (1991), 85–143 | MR | Zbl

[15] Antonevich A.B., Leonova E.Yu., “Variatsionnyi printsip dlya rasshirennogo topologicheskogo davleniya dinamicheskoi sistemy”, Algebra. Geometriya. Matematicheskii analiz, Shestnadtsataya mezhdunarodnaya nauchnaya konferentsiya imeni akademika Mikhaila Kravchuka, materialy konferentsii (14–15 maya 2015 g., Kiev), Kiev, 2015, 48–51