Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2016_24_2_a0, author = {A. B. Antonevich and E. Y. Leonova}, title = {On extension of the {Legendre} transform on $C(X)$ and its applications}, journal = {Trudy Instituta matematiki}, pages = {3--13}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a0/} }
TY - JOUR AU - A. B. Antonevich AU - E. Y. Leonova TI - On extension of the Legendre transform on $C(X)$ and its applications JO - Trudy Instituta matematiki PY - 2016 SP - 3 EP - 13 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a0/ LA - ru ID - TIMB_2016_24_2_a0 ER -
A. B. Antonevich; E. Y. Leonova. On extension of the Legendre transform on $C(X)$ and its applications. Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a0/
[1] Danford N., Shvarts Dzh., Lineinye operatory, v. 1, Obschaya teoriya, IL, M., 1962
[2] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR
[3] Kadets V. M., Kurs funktsionalnogo analiza, KhNU im. V.N. Karazina, Kharkov, 2006 | MR
[4] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999
[5] Antonevich A. B., “On Extension of the Legendre Transform”, Geometric Methods in Physics, Proceedings of the XXVIII Workshop on Geometric Methods in Physics, American Institute of Physics, Melville, New York, 2009, 1–6 | Zbl
[6] Antonevich A. B., “Rasshirenie prostranstva C(X), svyazannoe s preobrazovaniem Lezhandra”, Aktualnye problemy sovremennogo analiza, sb. nauch. tr., Grodnenskii gos. un-t im. Ya. Kupaly, eds. Yu.M. Vuvunikyan, Ya.V. Radyno, V.G. Krotov, GrGU, Grodno, 2009, 4–18
[7] Antonevich A. B., Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Universitetskoe, Minsk, 1988 | MR
[8] Kudryavtsev L. D., Kurs matematicheskogo analiza, v 3 t., v. 2, Ryady. Differentsialnoe i integralnoe ischisleniya funktsii mnogikh peremennykh, 5-e izd., pererabot. i dop., Drofa, M., 2004
[9] Bakhtin V. I., “On t-entropy and variational principle for the spectral radius of weighted shift operators”, Ergodic Theory Dynam. Systems, 30:5 (2010), 1331–1342 | DOI | MR | Zbl
[10] Antonevich A. B., Bakhtin V. I., Lebedev A. V., “On t-entropy and variational principle for the spectral radii of transfer and weighted shift operators”, Ergodic Theory Dynam. Systems, 31:4 (2011), 995–1042 | DOI | MR | Zbl
[11] Antonevich A. B., Zaikovski K., “Variatsionnye printsipy dlya spektralnogo radiusa funktsionalnykh operatorov”, Matem. sb., 197:5 (2006), 3–50 | DOI | MR | Zbl
[12] Latushkin Yu. D., “Ob integro-funktsionalnykh operatorakh s nevzaimnoodnoznachnym sdvigom”, Izv. AN SSSR. Ser. matem., 45:6 (1981), 1241–1257 | MR | Zbl
[13] Latushkin Yu. D., Stepin A. M., “Operator vzveshennogo sdviga na topologicheskoi markovskoi tsepi”, Funkts. analiz i ego pril., 22:4 (1988), 86–87 | MR
[14] Latushkin Yu. D., Stepin A. M., “Operatory vzveshennogo sdviga i lineinye rasshireniya dinamicheskikh sistem”, UMN, 46:2 (1991), 85–143 | MR | Zbl
[15] Antonevich A.B., Leonova E.Yu., “Variatsionnyi printsip dlya rasshirennogo topologicheskogo davleniya dinamicheskoi sistemy”, Algebra. Geometriya. Matematicheskii analiz, Shestnadtsataya mezhdunarodnaya nauchnaya konferentsiya imeni akademika Mikhaila Kravchuka, materialy konferentsii (14–15 maya 2015 g., Kiev), Kiev, 2015, 48–51