Three coloring of pure children drawings of snarks and the problem “The hunting of the snark”
Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 47-50

Voir la notice de l'article provenant de la source Math-Net.Ru

The Tait theorem as a consequence of Four Color Theorem states that planar qubic graphs are edge three-colorable. The first graph which is a counterexample for the Tait theorem was a nontrivial qubic (trivalent) Petersen graph $P,$ which is the only and minimal graph with chromatic index 4. The integer sequence OEIS A130315 describes (as defined by Martin Gardner) the number of (with girth $\ge5$) snarks, that are nontrivial qubic graphs with $2n$ verticies. The conjecture is presented that via transition from category Snarks to category SnarksPureDessins the derived two-colored graphs (pure children drawings of snarks) can be three-colored at halfedges. The embedding of the Petersen graph in double torus $\Sigma_2$ is presented. The $RGB$ theorem about the cycle double cover of the Peterson-Belyi graph $PB$ is proved.
@article{TIMB_2016_24_1_a6,
     author = {T. E. Krenkel and T. A. Kulikova},
     title = {Three coloring of pure children drawings of snarks and the problem {{\textquotedblleft}The} hunting of the snark{\textquotedblright}},
     journal = {Trudy Instituta matematiki},
     pages = {47--50},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a6/}
}
TY  - JOUR
AU  - T. E. Krenkel
AU  - T. A. Kulikova
TI  - Three coloring of pure children drawings of snarks and the problem “The hunting of the snark”
JO  - Trudy Instituta matematiki
PY  - 2016
SP  - 47
EP  - 50
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a6/
LA  - ru
ID  - TIMB_2016_24_1_a6
ER  - 
%0 Journal Article
%A T. E. Krenkel
%A T. A. Kulikova
%T Three coloring of pure children drawings of snarks and the problem “The hunting of the snark”
%J Trudy Instituta matematiki
%D 2016
%P 47-50
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a6/
%G ru
%F TIMB_2016_24_1_a6
T. E. Krenkel; T. A. Kulikova. Three coloring of pure children drawings of snarks and the problem “The hunting of the snark”. Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 47-50. http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a6/