Generalized solutions of boundary value problems for the Helmholtz equation
Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 38-46

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of generalized solutions of boundary value problems for the Helmholtz equation in Sobolev space. Averaging operators with variable step used in the proof.
@article{TIMB_2016_24_1_a5,
     author = {V. I. Korzyuk and G. Ch. Shushkevich},
     title = {Generalized solutions of boundary value problems for the {Helmholtz} equation},
     journal = {Trudy Instituta matematiki},
     pages = {38--46},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a5/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - G. Ch. Shushkevich
TI  - Generalized solutions of boundary value problems for the Helmholtz equation
JO  - Trudy Instituta matematiki
PY  - 2016
SP  - 38
EP  - 46
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a5/
LA  - ru
ID  - TIMB_2016_24_1_a5
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A G. Ch. Shushkevich
%T Generalized solutions of boundary value problems for the Helmholtz equation
%J Trudy Instituta matematiki
%D 2016
%P 38-46
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a5/
%G ru
%F TIMB_2016_24_1_a5
V. I. Korzyuk; G. Ch. Shushkevich. Generalized solutions of boundary value problems for the Helmholtz equation. Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 38-46. http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a5/