Generalized solutions of boundary value problems for the Helmholtz equation
Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 38-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the existence of generalized solutions of boundary value problems for the Helmholtz equation in Sobolev space. Averaging operators with variable step used in the proof.
@article{TIMB_2016_24_1_a5,
     author = {V. I. Korzyuk and G. Ch. Shushkevich},
     title = {Generalized solutions of boundary value problems for the {Helmholtz} equation},
     journal = {Trudy Instituta matematiki},
     pages = {38--46},
     year = {2016},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a5/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - G. Ch. Shushkevich
TI  - Generalized solutions of boundary value problems for the Helmholtz equation
JO  - Trudy Instituta matematiki
PY  - 2016
SP  - 38
EP  - 46
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a5/
LA  - ru
ID  - TIMB_2016_24_1_a5
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A G. Ch. Shushkevich
%T Generalized solutions of boundary value problems for the Helmholtz equation
%J Trudy Instituta matematiki
%D 2016
%P 38-46
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a5/
%G ru
%F TIMB_2016_24_1_a5
V. I. Korzyuk; G. Ch. Shushkevich. Generalized solutions of boundary value problems for the Helmholtz equation. Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 38-46. http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a5/

[1] Korzyuk V. I., “Operatory osredneniya s peremennym shagom v teorii razreshimosti elllipticheskikh zadach”, Dokl. NAN Belarusi, 49:6 (2005), 25–28

[2] Korzyuk V. I., Cheb E. S., “Granichnye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka”, Tr. In-ta matematiki, 15:6 (2007), 38–47 | Zbl

[3] Ilinskii A. S., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vyssh. shkola, M., 1991

[4] Smirnov Yu. G., Ilinskii A. S., Difraktsiya elektromagnitnykh voln na provodyaschikh tonkikh ekranakh. Psevdodifferentsialnye operatory v zadachakh difraktsii, Radiotekhnika, M., 1996

[5] Korzyuk V. I., Shushkevich G. Ch., “Proniknovenie magnitnogo polya v tonkuyu nezamknutuyu ellipsoidalnuyu obolochku v prisutstvii provodyaschei tolstostennoi sfericheskoi obolochki”, Zhurn. tekhn. fiziki, 79:6 (2006), 9–14

[6] Korzyuk V. I., Shushkevich G. Ch., “O razreshimosti nekotorykh zadach v teorii ekranirovaniya polei sistemami ekranov”, Tr. In-ta matematiki, 14:1 (2006), 71–81

[7] Korzyuk V. I., Shushkevich G. Ch., “Ekranirovanie neosesimmetrichnogo magnitnogo polya sistemoi ekranov: tonkaya nezamknutaya ellipsoidalnaya obolochka — sfericheskaya obolochka”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2009, no. 1, 38–46

[8] Korzyuk V. I., Shushkevich G. Ch., “Modeling of an electrostatic field for thin open-ended shells in 3D”, Computer Algebra Systems in Teaching and Research. Mathematical physics and modeling in economics, finance and education, WSFiZ, Siedlce, 2009, 59–66

[9] Burenkov V. I., Sobolev Spaces on Domains, Stuttgart–Leipzig, 1998

[10] Burenkov V. I., “O razbienii edinitsy”, Tr. mat. in-ta AN SSSR, 180, 1979, 24–38

[11] Korzyuk V. I., Metod energeticheskikh neravenstv i operatorov osredneniya. Granichnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, BGU, Minsk, 2013

[12] Korzyuk V. I., Uravneniya matematicheskoi fiziki, BGU, Minsk, 2011

[13] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976