Generalized solutions of boundary value problems for the Helmholtz equation
Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 38-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of generalized solutions of boundary value problems for the Helmholtz equation in Sobolev space. Averaging operators with variable step used in the proof.
@article{TIMB_2016_24_1_a5,
     author = {V. I. Korzyuk and G. Ch. Shushkevich},
     title = {Generalized solutions of boundary value problems for the {Helmholtz} equation},
     journal = {Trudy Instituta matematiki},
     pages = {38--46},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a5/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - G. Ch. Shushkevich
TI  - Generalized solutions of boundary value problems for the Helmholtz equation
JO  - Trudy Instituta matematiki
PY  - 2016
SP  - 38
EP  - 46
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a5/
LA  - ru
ID  - TIMB_2016_24_1_a5
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A G. Ch. Shushkevich
%T Generalized solutions of boundary value problems for the Helmholtz equation
%J Trudy Instituta matematiki
%D 2016
%P 38-46
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a5/
%G ru
%F TIMB_2016_24_1_a5
V. I. Korzyuk; G. Ch. Shushkevich. Generalized solutions of boundary value problems for the Helmholtz equation. Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 38-46. http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a5/

[1] Korzyuk V. I., “Operatory osredneniya s peremennym shagom v teorii razreshimosti elllipticheskikh zadach”, Dokl. NAN Belarusi, 49:6 (2005), 25–28

[2] Korzyuk V. I., Cheb E. S., “Granichnye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka”, Tr. In-ta matematiki, 15:6 (2007), 38–47 | Zbl

[3] Ilinskii A. S., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vyssh. shkola, M., 1991

[4] Smirnov Yu. G., Ilinskii A. S., Difraktsiya elektromagnitnykh voln na provodyaschikh tonkikh ekranakh. Psevdodifferentsialnye operatory v zadachakh difraktsii, Radiotekhnika, M., 1996

[5] Korzyuk V. I., Shushkevich G. Ch., “Proniknovenie magnitnogo polya v tonkuyu nezamknutuyu ellipsoidalnuyu obolochku v prisutstvii provodyaschei tolstostennoi sfericheskoi obolochki”, Zhurn. tekhn. fiziki, 79:6 (2006), 9–14

[6] Korzyuk V. I., Shushkevich G. Ch., “O razreshimosti nekotorykh zadach v teorii ekranirovaniya polei sistemami ekranov”, Tr. In-ta matematiki, 14:1 (2006), 71–81

[7] Korzyuk V. I., Shushkevich G. Ch., “Ekranirovanie neosesimmetrichnogo magnitnogo polya sistemoi ekranov: tonkaya nezamknutaya ellipsoidalnaya obolochka — sfericheskaya obolochka”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2009, no. 1, 38–46

[8] Korzyuk V. I., Shushkevich G. Ch., “Modeling of an electrostatic field for thin open-ended shells in 3D”, Computer Algebra Systems in Teaching and Research. Mathematical physics and modeling in economics, finance and education, WSFiZ, Siedlce, 2009, 59–66

[9] Burenkov V. I., Sobolev Spaces on Domains, Stuttgart–Leipzig, 1998

[10] Burenkov V. I., “O razbienii edinitsy”, Tr. mat. in-ta AN SSSR, 180, 1979, 24–38

[11] Korzyuk V. I., Metod energeticheskikh neravenstv i operatorov osredneniya. Granichnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, BGU, Minsk, 2013

[12] Korzyuk V. I., Uravneniya matematicheskoi fiziki, BGU, Minsk, 2011

[13] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976