Generalized solutions of boundary value problems for the Helmholtz equation
Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 38-46
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the existence of generalized solutions of boundary value problems for the Helmholtz equation in Sobolev space. Averaging operators with variable step used in the proof.
@article{TIMB_2016_24_1_a5,
author = {V. I. Korzyuk and G. Ch. Shushkevich},
title = {Generalized solutions of boundary value problems for the {Helmholtz} equation},
journal = {Trudy Instituta matematiki},
pages = {38--46},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a5/}
}
TY - JOUR AU - V. I. Korzyuk AU - G. Ch. Shushkevich TI - Generalized solutions of boundary value problems for the Helmholtz equation JO - Trudy Instituta matematiki PY - 2016 SP - 38 EP - 46 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a5/ LA - ru ID - TIMB_2016_24_1_a5 ER -
V. I. Korzyuk; G. Ch. Shushkevich. Generalized solutions of boundary value problems for the Helmholtz equation. Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 38-46. http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a5/