On permutability of $n$-maximal subgroups with $p$-nilpotent Schmidt subgroups
Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 34-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Schmidt group is a finite nonnilpotent group in which every proper subgroup is nilpotent. Fix a positive integer $n.$ Let $G$ be a solvable group. Suppose that each $n$-maximal subgroup of $G$ is permutable with every $p$-nilpotent Schmidt subgroup. We prove that if $n\in\{1,2,3\},$ then $G/F(G)$ is $p$-closed, where $F(G)$ is the Fitting subgroup of $G$.
@article{TIMB_2016_24_1_a4,
     author = {V. N. Kniahina},
     title = {On permutability of $n$-maximal subgroups with $p$-nilpotent {Schmidt} subgroups},
     journal = {Trudy Instituta matematiki},
     pages = {34--37},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a4/}
}
TY  - JOUR
AU  - V. N. Kniahina
TI  - On permutability of $n$-maximal subgroups with $p$-nilpotent Schmidt subgroups
JO  - Trudy Instituta matematiki
PY  - 2016
SP  - 34
EP  - 37
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a4/
LA  - ru
ID  - TIMB_2016_24_1_a4
ER  - 
%0 Journal Article
%A V. N. Kniahina
%T On permutability of $n$-maximal subgroups with $p$-nilpotent Schmidt subgroups
%J Trudy Instituta matematiki
%D 2016
%P 34-37
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a4/
%G ru
%F TIMB_2016_24_1_a4
V. N. Kniahina. On permutability of $n$-maximal subgroups with $p$-nilpotent Schmidt subgroups. Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 34-37. http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a4/

[1] Knyagina V. N., Monakhov V. S., “O perestanovochnosti maksimalnykh podgrupp s podgruppami Shmidta”, Trudy In-ta matematiki i mekhaniki UrO RAN, 17, no. 4, 2011, 126–133 | Zbl

[2] Knyagina V. N., Monakhov V. S., “O perestanovochnosti $n$-maksimalnykh podgrupp s podgruppami Shmidta”, Trudy In-ta matematiki mekhaniki UrO RAN, 18, no. 3, 2012, 125–130 | Zbl

[3] Huppert B., Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | Zbl

[4] Monakhov V. S., “Podgruppy Shmidta, ikh suschestvovanie i nekotorye prilozheniya”, Pratsi Ukrain. mat. kongresu–2001, Sekts. 1, In-t matematiki NAN Ukraini, Kiiv, 2002, 81–90

[5] Knyagina V. N., Monakhov V. S., “Konechnye gruppy s nilpotentnymi i khollovymi podgruppami”, Diskretnaya matematika, 25:1 (2013), 137–143 | DOI | Zbl

[6] Knyagina V. N., Monakhov V. S., “O podgruppakh konechnoi gruppy, perestanovochnykh s biprimarnymi podgruppami”, Mat. zametki, 89:4 (2011), 524–529 | DOI | Zbl

[7] Monakhov V. S., Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006

[8] Gaschutz W., Lectures of subgroups of Sylow type in finite soluble groups, Notes on pure mathematics, 11, Australian National University, Canberra, 1979