Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2016_24_1_a4, author = {V. N. Kniahina}, title = {On permutability of $n$-maximal subgroups with $p$-nilpotent {Schmidt} subgroups}, journal = {Trudy Instituta matematiki}, pages = {34--37}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a4/} }
V. N. Kniahina. On permutability of $n$-maximal subgroups with $p$-nilpotent Schmidt subgroups. Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 34-37. http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a4/
[1] Knyagina V. N., Monakhov V. S., “O perestanovochnosti maksimalnykh podgrupp s podgruppami Shmidta”, Trudy In-ta matematiki i mekhaniki UrO RAN, 17, no. 4, 2011, 126–133 | Zbl
[2] Knyagina V. N., Monakhov V. S., “O perestanovochnosti $n$-maksimalnykh podgrupp s podgruppami Shmidta”, Trudy In-ta matematiki mekhaniki UrO RAN, 18, no. 3, 2012, 125–130 | Zbl
[3] Huppert B., Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | Zbl
[4] Monakhov V. S., “Podgruppy Shmidta, ikh suschestvovanie i nekotorye prilozheniya”, Pratsi Ukrain. mat. kongresu–2001, Sekts. 1, In-t matematiki NAN Ukraini, Kiiv, 2002, 81–90
[5] Knyagina V. N., Monakhov V. S., “Konechnye gruppy s nilpotentnymi i khollovymi podgruppami”, Diskretnaya matematika, 25:1 (2013), 137–143 | DOI | Zbl
[6] Knyagina V. N., Monakhov V. S., “O podgruppakh konechnoi gruppy, perestanovochnykh s biprimarnymi podgruppami”, Mat. zametki, 89:4 (2011), 524–529 | DOI | Zbl
[7] Monakhov V. S., Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006
[8] Gaschutz W., Lectures of subgroups of Sylow type in finite soluble groups, Notes on pure mathematics, 11, Australian National University, Canberra, 1979