On finite solvable groups with bicyclic cofactors of primary subgroups
Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 95-99

Voir la notice de l'article provenant de la source Math-Net.Ru

Finite soluble groups with bicyclic cofactors of primary subgroups are investigated. It is proved that the derived length of $G/\Phi(G)$ is at most $6,$ the nilpotent length of $G$ is at most $4,$ $\{2,3\}'$-Hall subgroup of $G$ possesses an ordered Sylow tower of supersolvable type and normal in $G$.
@article{TIMB_2016_24_1_a10,
     author = {A. A. Trofimuk and D. D. Daudov},
     title = {On finite solvable groups with bicyclic cofactors of primary subgroups},
     journal = {Trudy Instituta matematiki},
     pages = {95--99},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a10/}
}
TY  - JOUR
AU  - A. A. Trofimuk
AU  - D. D. Daudov
TI  - On finite solvable groups with bicyclic cofactors of primary subgroups
JO  - Trudy Instituta matematiki
PY  - 2016
SP  - 95
EP  - 99
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a10/
LA  - ru
ID  - TIMB_2016_24_1_a10
ER  - 
%0 Journal Article
%A A. A. Trofimuk
%A D. D. Daudov
%T On finite solvable groups with bicyclic cofactors of primary subgroups
%J Trudy Instituta matematiki
%D 2016
%P 95-99
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a10/
%G ru
%F TIMB_2016_24_1_a10
A. A. Trofimuk; D. D. Daudov. On finite solvable groups with bicyclic cofactors of primary subgroups. Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 95-99. http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a10/