On finite solvable groups with bicyclic cofactors of primary subgroups
Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 95-99
Voir la notice de l'article provenant de la source Math-Net.Ru
Finite soluble groups with bicyclic cofactors of primary subgroups are investigated. It is proved that the derived length of $G/\Phi(G)$ is at most $6,$ the nilpotent length of $G$ is at most $4,$ $\{2,3\}'$-Hall subgroup of $G$ possesses an ordered Sylow tower of supersolvable type and normal in $G$.
@article{TIMB_2016_24_1_a10,
author = {A. A. Trofimuk and D. D. Daudov},
title = {On finite solvable groups with bicyclic cofactors of primary subgroups},
journal = {Trudy Instituta matematiki},
pages = {95--99},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a10/}
}
TY - JOUR AU - A. A. Trofimuk AU - D. D. Daudov TI - On finite solvable groups with bicyclic cofactors of primary subgroups JO - Trudy Instituta matematiki PY - 2016 SP - 95 EP - 99 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a10/ LA - ru ID - TIMB_2016_24_1_a10 ER -
A. A. Trofimuk; D. D. Daudov. On finite solvable groups with bicyclic cofactors of primary subgroups. Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 95-99. http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a10/