Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2016_24_1_a1, author = {V. A. Emelichev and V. I. Mychkov}, title = {Postoptimal analysis for one vector venturesome investment problem}, journal = {Trudy Instituta matematiki}, pages = {9--18}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a1/} }
V. A. Emelichev; V. I. Mychkov. Postoptimal analysis for one vector venturesome investment problem. Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 9-18. http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a1/
[1] Miettinen K., Nonlinear Multiobjective Optimization, Boston, 1999
[2] Sergienko I. V., Shilo V. P., Zadachi diskretnoi optimizatsii. Problemy, metody resheniya, issledovaniya, Kiev, 2003
[3] Greenberg H. J., “An annotated bibliography for post-solution analysis in mixed integer programming and combinatorial optimization”, Advances in combinatorial and stochastic optimization. Logic programming and heuristic search, Boston, 1998, 97–148 | DOI
[4] Ehrgott M., Gandibleux X., “A survey and annotated bibliography of multiobjective combinatorial optimization”, Operation Research Spectrum, 22:4 (2000), 425–460 | DOI | Zbl
[5] Emelichev V. A., Kravtsov M. K., Podkopaev D. P., “O kvaziustoichivosti traektornykh zadach vektornoi optimizatsii”, Mat. zametki, 63:1 (1998), 21–27 | DOI | Zbl
[6] Emelichev V. A., Kuzmin K. G., Leonovich A. M., “Ustoichivost v vektornykh kombinatornykh zadachakh optimizatsii”, Avtomatika i telemekhanika, 2004, no. 2, 79–92
[7] Emelichev V. A., Kuzmin K. G., “O kvaziustoichivosti vektornoi bulevoi zadachi minimizatsii modulei lineinykh funktsii”, Vestsi NAN Belarusi. Ser. fiz-mat. navuk, 2005, no. 4, 55–58
[8] Gurevskii E. E., Emelichev V. A., Kuzmin K. G., “O dvukh tipakh ustoichivosti leksikograficheskoi zadachi minimizatsii modulei lineinykh funktsii”, Kibernetika i sistemnyi analiz, 2007, no. 4, 127–132
[9] Emelichev V. A., Kuzmin K. G., “Kriterii ustoichivosti vektornykh kombinatornykh zadach na “uzkie mesta” v terminakh binarnykh otnoshenii”, Kibernetika i sistemnyi analiz, 2008, no. 3, 103–111
[10] Vodennikov A. G., Emelichev V. A., Kuzmin K. G., “Ob odnom tipe ustoichivosti vektornoi kombinatornoi zadachi razmescheniya”, Diskretnyi analiz i issledovanie operatsii. Ser. 2, 14:2 (2007), 32–40 | Zbl
[11] Emelichev V. A., Gurevsky E. E., Kuzmin K. G., “On stability of some lexicographic integer optimization problem”, Control and Cybernetics, 39:3 (2010), 35–44
[12] Emelichev V. A., Karelkina O. V., Kuzmin K. G., “Qualitative stability analysis of multicriteria combinatorial minimin problem”, Control and Cybernetics, 41:1 (2012), 57–79 | Zbl
[13] Lebedeva T. T., Semenova N. V., Sergienko T. I., “Ustoichivost vektornykh zadach tselochislennoi optimizatsii: vzaimosvyaz s ustoichivostyu mnozhestva optimalnykh i neoptimalnykh reshenii”, Kibernetika i sistemnyi analiz, 2005, no. 4, 90–100
[14] Lebedeva T. T., Sergienko T. I., “Raznye tipy ustoichivosti vektornoi zadachi tselochislennoi optimizatsii: obschii podkhod”, Kibernetika i sistemnyi analiz, 2008, no. 3, 142–148
[15] Libura M., van der Pourt E. S., Sierksma G., van der Veen J. A. A., “Stability aspects of the traveling salesman problem based on $k$-best solutions”, Discrete Applied Mathematics, 87 (1998), 159–185 | DOI | Zbl
[16] Sotskov Yu. N., Sotskova N. Yu., Teoriya raspisanii. Sistemy s neopredelennymi chislovymi parametrami, Minsk, 2004
[17] Emelichev V. A., Kravtsov M. K., “Ob ustoichivosti v traektornykh zadachakh vektornoi optimizatsii”, Kibernetika i sistemnyi analiz, 1995, no. 4, 137–143
[18] Sotskov Yu. N., Leontev V. K., Gordeev E. N., “Some concepts of stability analysis in combinatorial optimization”, Discrete Applied Mathematics, 58:2 (1995), 169–190 | DOI | Zbl
[19] Emelichev V. A., Girlich E., Nikulin Yu. V., Podkopaev D. P., “Stability and regularization of vector problem of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | Zbl
[20] Emelichev V. A., Kuzmin K. G., “Obschii podkhod k issledovaniyu ustoichivosti Pareto-optimalnogo resheniya vektornoi zadachi tselochislennogo lineinogo programmirovaniya”, Diskretnaya matematika, 19:3 (2007), 79–83 | DOI | Zbl
[21] Emelichev V., Podkopaev D., “Quantitative stability analysis for vector problems of 0–1 programming”, Discrete Optimization, 7:1–2 (2010), 48–63 | DOI | Zbl
[22] Gordeev E. N., “Algoritmy polinomialnoi slozhnosti dlya vychisleniya radiusa ustoichivosti v dvukh klassakh traektornykh zadach”, Zhurn. vychislit. matematiki i mat. fiziki, 27:7 (1987), 984–992
[23] Chakravarti N., Wagelmans A., “Calculation of stability radius for combinatorial optimization problems”, Operations Research Letters, 23:1 (1998), 1–7 | DOI | Zbl
[24] Gordeev E. N., “Issledovanie ustoichivosti zadachi o kratchaishem ostove v metrike $l_1$”, Zhurn. vychislit. matematiki i mat. fiziki, 39:5 (1999), 770–778 | Zbl
[25] Gordeev E. N., “Issledovanie ustoichivosti v optimizatsionnykh zadachakh na matroidakh v metrike $l_1$”, Kibernetika i sistemnyi analiz, 2001, no. 2, 132–144
[26] Roland J., Smet Y., Figueira J., “On the calculation of stability radius for multi-objective combinatorial optimization problems by inverse optimization”, Journal Operations Research, 10:4 (2012), 379–389 | Zbl
[27] Emelichev V. A., Korotkov V. V., Kuzmin K. G., “Mnogokriterialnaya investitsionnaya zadacha v usloviyakh neopredelennosti i riska”, Izv. RAN. Teoriya i sistemy upravleniya, 2011, no. 6, 157–164
[28] Emelichev V. A., Korotkov V. V., “O radiuse ustoichivosti vektornoi investitsionnoi zadachi s kriteriyami minimaksnogo riska Sevidzha”, Kibernetika i sistemnyi analiz, 2012, no. 3, 68–77
[29] Emelichev V., Korotkov V., “Post-optimal analysis of investment problem with Wald's ordered maximin criteria”, Bulletin of the Academy of Sciences of Moldova. Mathematics, 2012, no. 1(68), 59–69 | Zbl
[30] Emelichev V. A., Korotkov V. V., “Ustoichivost vektornoi investitsionnoi bulevoi zadachi s kriteriyami Valda”, Diskretnaya matematika, 24:3 (2012), 3–16 | DOI
[31] Emelichev V. A., Korotkov V. V., “Postoptimalnyi analiz bikriterialnoi bulevoi zadachi vybora investitsionnykh proektov s kriteriyami Valda i Sevidzha”, Izv. RAN. Teoriya i sistemy upravleniya, 2013, no. 4, 109–118 | DOI
[32] Bukhtoyarov S. E., Emelichev V. A., “On the stability measure of solutions to a vector version of an investment problem”, J. of Applied and Industrial Mathematics, 9:3 (2015), 328–334 | DOI | Zbl
[33] Emelichev V. A., Ustilko E. V., “Postoptimalnyi analiz investitsionnoi zadachi s kriteriyami krainego optimizma”, Prikladnaya diskretnaya matematika, 2014, no. 3, 117–123
[34] Bukhtoyarov S. E., Emelichev V. A., “Ustoichivost investitsionnoi zadachi Markovitsa s kriteriyami krainego optimizma”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2014, no. 3, 44–48
[35] Emelichev V. A., Mychkov V. I., “O radiuse ustoichivosti mnogokriterialnoi investitsionnoi zadachi s normami Geldera v prostranstvakh parametrov”, Diskretnaya matematika, algebra i ikh prilozheniya, DIMA-2015, Tez. dokl. Mezhdunar. nauch. konf., posvyasch. 100-letiyu D. A. Suprunenko (Minsk, 14–18 sentyabrya 2015), Institut matematiki NAN Belarusi, Minsk, 2015, 101–103
[36] Markowitz H. M., Portfolio Selection: Efficient Diversification of Investments, Oxford, 1991
[37] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, M., 2007
[38] Emelichev V. A., Podkopaev D. P., “Ustoichivost i regulyarizatsiya vektornoi zadachi tselochislennogo lineinogo programmirovaniya”, Diskretnyi analiz i issledovanie operatsii, 8:1 (2001), 47–69 | Zbl