Schwarz forms for linear discrete observation system
Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

The necessary and sufficient conditions for linear discrete time-varying observation system with scalar output to be transformed to the Schwarz form under the action of the linear time-varying group are obtained.
@article{TIMB_2016_24_1_a0,
     author = {A. I. Astrovskii},
     title = {Schwarz forms for linear discrete observation system},
     journal = {Trudy Instituta matematiki},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a0/}
}
TY  - JOUR
AU  - A. I. Astrovskii
TI  - Schwarz forms for linear discrete observation system
JO  - Trudy Instituta matematiki
PY  - 2016
SP  - 3
EP  - 8
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a0/
LA  - ru
ID  - TIMB_2016_24_1_a0
ER  - 
%0 Journal Article
%A A. I. Astrovskii
%T Schwarz forms for linear discrete observation system
%J Trudy Instituta matematiki
%D 2016
%P 3-8
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a0/
%G ru
%F TIMB_2016_24_1_a0
A. I. Astrovskii. Schwarz forms for linear discrete observation system. Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 3-8. http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a0/

[1] Tsypkin Ya. Z., Teoriya impulsnykh sistem, Fizmatgiz, M., 1958

[2] Popov E. P., Dinamika sistem avtomaticheskogo regulirovaniya, Gostekhizdat, M., 1964

[3] Khalanai A., Veksler D., Kachestvennaya teoriya impulsnykh sistem, Mir, M., 1971

[4] Gaishun I. V., Sistemy s diskretnym vremenem, In-t matematiki NAN Belarusi, Minsk, 2001

[5] Gaishun I. V., Vvedenie v teoriyu lineinykh nestatsionarnykh sistem, Editorial URSS, M., 2004

[6] Astrovskii A. I., Gaishun I. V., Lineinye sistemy s kvazidifferentsiruemymi koeffitsientami: upravlyaemost i nablyudaemost dvizhenii, Belarus. navuka, Minsk, 2013

[7] Astrovskii A. I., Gaishun I. V., “Svyaz mezhdu kanonicheskimi formami lineinykh differentsialnykh sistem nablyudeniya i kanonicheskimi formami ikh diskretnykh approksimatsii”, Differents. uravneniya, 47:7 (2011), 954–962 | Zbl

[8] Astrovskii A. I., Gaishun I. V., “Kanonicheskie formy lineinykh nestatsionarnykh sistem nablyudeniya s kvazidifferentsiruemymi koeffitsientami otnositelno razlichnykh grupp preobrazovanii”, Differents. uravneniya, 47:2 (2011), 254–263 | Zbl

[9] Astrovskii A. I., Gaishun I. V., “Odin sposob postroeniya kanonicheskikh form Frobeniusa lineinykh nestatsionarnykh sistem nablyudeniya”, Differents. uravneniya, 46:10 (2010), 1479–1487 | Zbl

[10] Astrovskii A. I., Gaishun I. V., “Kvazidifferentsiruemost i kanonicheskie formy lineinykh nestatsionarnykh sistem nablyudeniya”, Differents. uravneniya, 46:3 (2010), 423–431 | Zbl

[11] Astrovskii A. I., Gaishun I. V., “Suschestvovanie i sposob postroeniya kanonicheskikh form lineinykh nestatsionarnykh sistem upravleniya so skalyarnym vkhodom”, Differents. uravneniya, 50:12 (2014), 1622–1628 | DOI | Zbl

[12] Astrovskii A. I., Gaishun I. V., “Kvazidifferentsiruemost i nablyudaemost lineinykh nestatsionarnykh sistem”, Differents. uravneniya, 45:11 (2009), 1567–1576 | Zbl

[13] Astrovskii A. I., “Preobrazovanie lineinykh nestatsionarnykh sistem nablyudeniya so skalyarnym vykhodom k kanonicheskim formam Frobeniusa”, Dokl. NAN Belarusi, 53:6 (2009), 16–21

[14] Chen C. F., Chu H., “A matrix for evaluating Schwarz's form”, IEEE Trans. Autom. Control, AC-11:2 (1966), 303–305 | DOI

[15] Lab M., “On Schwarz canonical form for large system simplification”, IEEE Trans. Autom. Control, AC-20:2 (1975), 262–263

[16] Anderson B. D. O., Jury E. I., Mansour M., “Schwarz matrix properties for continuous and discrete time systems”, Int. J. Control, 23:1 (1976), 1–16 | DOI | Zbl