Mathematical theory of geometric Koopmans model
Trudy Instituta matematiki, Tome 23 (2015) no. 2, pp. 43-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Geometrical Koopmans' model $W$ of economic systems deals with effective techlogical processes and optimal estimates of these processes. Methods of Convex Analysis allow to clarify the relations between effective techlogical processes and their optimal estimates in terms of tangent nonnegative vectors to the boundary $\partial W$ of the set $W$.
@article{TIMB_2015_23_2_a5,
     author = {P. P. Zabreiko},
     title = {Mathematical theory of geometric {Koopmans} model},
     journal = {Trudy Instituta matematiki},
     pages = {43--55},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a5/}
}
TY  - JOUR
AU  - P. P. Zabreiko
TI  - Mathematical theory of geometric Koopmans model
JO  - Trudy Instituta matematiki
PY  - 2015
SP  - 43
EP  - 55
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a5/
LA  - ru
ID  - TIMB_2015_23_2_a5
ER  - 
%0 Journal Article
%A P. P. Zabreiko
%T Mathematical theory of geometric Koopmans model
%J Trudy Instituta matematiki
%D 2015
%P 43-55
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a5/
%G ru
%F TIMB_2015_23_2_a5
P. P. Zabreiko. Mathematical theory of geometric Koopmans model. Trudy Instituta matematiki, Tome 23 (2015) no. 2, pp. 43-55. http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a5/

[1] Lankaster K., Matematicheskaya ekonomika, Sovetskoe Radio, M., 1972

[2] Allen R., Matematicheskaya ekonomiya, Izd-vo inostr. lit., M., 1963

[3] Koopmans T. K. (Ed.), Activity Analysis of Production and Allocation, Cowles monograph, 13, Wiley, 1951

[4] Koopmans T. K., Three essays on the state of Economic Sciences, McGraw-Hill, 1957

[5] Morgenstern O. (Ed.), Economic Activity Analysis, Wiley, 1954 | MR | Zbl

[6] Lancaster K. J., “A new approach to Consumer Theory”, J. of Political Economy, 1966, no. 74, 132–157 | DOI

[7] Lancaster K. J., “Change and Innovation in the Technology of Consumption”, American Economic Review (Papers and Proceedings), 1966, no. 14–23

[8] Zabreiko P.P., “Obobschennaya model Leonteva i teorema Samuelsona o zameschenii”, Trudy in-ta matem. NAN Belarusi, 13:1 (2005), 21–31 | MR

[9] Krasnoselskii M.A., Polozhitelnye resheniya operatornykh uravnenii, GI fiz.-mat. lit., M., 1962 | MR

[10] Krasnoselskii M.A., Lifshits E.A., Sobolev A.V., Pozitivnye lineinye sistemy. Metod polozhitelnykh operatorov, Nauka, M., 1985 | MR